Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1700 б
- arkasha_bortnikov 890 б
- Dwayne_Johnson 860 б
2 апреля 2023 15:04
1067
Площадь полной поверхности куба равна 24см2
Найдите его диагональ.
2
ответа
Площадь поверхности куба: S = 6а², где а - ребро куба.
Поусловию S = 24 cм², тогда 6а² = 24, откуда а² = 4, значит, а = 2 см - ребро нашего куба.
Куб - это прямоугольный параллелепипед, у которого все ребра равны.
Существует теорема: квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов его измерений, т.е.
d² = a² + b² + c², d - диагональ, a, b, c - измерения (ребра) параллелепипеда.
Для куба формула примет вид: d² = 3a², т.е. d² = 3 · 2², откуда d = 2√3 (см).
Ответ: 2√3 см.
Поусловию S = 24 cм², тогда 6а² = 24, откуда а² = 4, значит, а = 2 см - ребро нашего куба.
Куб - это прямоугольный параллелепипед, у которого все ребра равны.
Существует теорема: квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов его измерений, т.е.
d² = a² + b² + c², d - диагональ, a, b, c - измерения (ребра) параллелепипеда.
Для куба формула примет вид: d² = 3a², т.е. d² = 3 · 2², откуда d = 2√3 (см).
Ответ: 2√3 см.
0
·
Хороший ответ
4 апреля 2023 15:04
Площадь поверхности куба
S = 6a^2 = 24 кв.см.
Отсюда ребро куба
a^2 = 24/6 = 4; a = 2 см.
Длина диагонали грани куба
d = a√2 = 2√2 см
Длина диагонали куба (иногда говорят - триагонали)
D = a√3 = 2√3 см.
S = 6a^2 = 24 кв.см.
Отсюда ребро куба
a^2 = 24/6 = 4; a = 2 см.
Длина диагонали грани куба
d = a√2 = 2√2 см
Длина диагонали куба (иногда говорят - триагонали)
D = a√3 = 2√3 см.
0
4 апреля 2023 15:04
Остались вопросы?
Еще вопросы по категории Алгебра
(корень из 89) срочно надо((...
Найти синус 330 градусов ПОДРОБНО...
1) Дано ABCA1B1C1 - прямая треугольная призма, AC=BC, угол ACB = 90, BN=NA, угол CNC1=45 градусов, CC1=6. Найти V. 2) Дано ABCA1B1C1 - треугольная при...
Найдите tgальфа,если sin=- 5/корень из 26 и альфа принадлежит (П;3/2П)...
Решить...
Все предметы