Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
2 апреля 2023 16:57
887
Сколько существует возрастающихарифметических прогрессий из 25
различных натуральных чисел, в которых
все числа не больше 1000?
Срочно!!
1
ответ
Ответ:
20336
Объяснение:
По условию все члены арифметических прогрессий различные натуральные числа, откуда следует d∈N.
Чтобы получить возрастающую арифметическую прогрессию наименьшее значение разности d можем выбрать 1.
Определим наибольшее значение d из условия:
a₁=1, n=25, a₂₅≤1000.
Известно, что общий член арифметической прогрессии можно определить по формуле: aₓ=a₁+(x-1)•d.
Отсюда
a₂₅=1+(25-1)•d≤1000 ⇔ 24•d≤999 ⇔ d≤41,625.
Так как d натуральное число, то наибольшее значение d равен 41.
При d = 41 определим наибольшее значение a₁ из условия:
a₂₅≤1000, n=25, d = 41.
Тогда
a₂₅=a₁+(25-1)•41≤1000 ⇔ a₁≤1000-984=16.
Отсюда, при d = 41 наименьшее значение a₁=1 и наибольшее значение a₁=16, то есть при d = 41 получаем всего 16 возрастающих арифметических прогрессий из 25 различных натуральных чисел.
Нетрудно увидеть, что при d = 1 наименьшее значение a₁=1 и наибольшее значение a₁=976, то есть при d = 1 получаем всего 976 возрастающих арифметических прогрессий из 25 различных натуральных чисел.
Теперь определим шаг изменений наибольших значений a₁:
(976-16)/(41-1)=960/40=24.
Значит, следующую получаем арифметическую прогрессию из наибольших значений a₁:
b₁=16, d=24, b₄₁=976.
Сумма первых x членов арифметической прогрессии вычисляется по формуле
Sₓ=(b₁+bₓ)•x/2.
Вычислим сумму первых 41 членов арифметической прогрессии :
S₄₁=(b₁+b₄₁)•41/2=(16+976)•41/2=992•41/2=496•41=20336.
20336
Объяснение:
По условию все члены арифметических прогрессий различные натуральные числа, откуда следует d∈N.
Чтобы получить возрастающую арифметическую прогрессию наименьшее значение разности d можем выбрать 1.
Определим наибольшее значение d из условия:
a₁=1, n=25, a₂₅≤1000.
Известно, что общий член арифметической прогрессии можно определить по формуле: aₓ=a₁+(x-1)•d.
Отсюда
a₂₅=1+(25-1)•d≤1000 ⇔ 24•d≤999 ⇔ d≤41,625.
Так как d натуральное число, то наибольшее значение d равен 41.
При d = 41 определим наибольшее значение a₁ из условия:
a₂₅≤1000, n=25, d = 41.
Тогда
a₂₅=a₁+(25-1)•41≤1000 ⇔ a₁≤1000-984=16.
Отсюда, при d = 41 наименьшее значение a₁=1 и наибольшее значение a₁=16, то есть при d = 41 получаем всего 16 возрастающих арифметических прогрессий из 25 различных натуральных чисел.
Нетрудно увидеть, что при d = 1 наименьшее значение a₁=1 и наибольшее значение a₁=976, то есть при d = 1 получаем всего 976 возрастающих арифметических прогрессий из 25 различных натуральных чисел.
Теперь определим шаг изменений наибольших значений a₁:
(976-16)/(41-1)=960/40=24.
Значит, следующую получаем арифметическую прогрессию из наибольших значений a₁:
b₁=16, d=24, b₄₁=976.
Сумма первых x членов арифметической прогрессии вычисляется по формуле
Sₓ=(b₁+bₓ)•x/2.
Вычислим сумму первых 41 членов арифметической прогрессии :
S₄₁=(b₁+b₄₁)•41/2=(16+976)•41/2=992•41/2=496•41=20336.
0
·
Хороший ответ
4 апреля 2023 16:57
Остались вопросы?
Еще вопросы по категории Алгебра
1) Cos2x+ Корень из 3 cosx-2=0. 2) 6sinx-2cos2x-4cos^2 x-3 / корень из 7 sinx-3cosx. 3) 4sin^4 x/2+12cos^2 x/2=7...
НАЙДИТЕ ТОЧКУ МАКСИМУМА ФУНКЦИИ У=6+81Х-Х^3/3 ОТВЕТ БУДЕТ 9,НУЖНО РЕШЕНИЕ ...
1. Найти интеграл методом почленного интегрирования...
диаметр шара равен высоте цилиндра осевое сечение которого есть квадрат. найдите отношение объемов шара и цилиндра...
Найдите высоту треугольника ABC, опущенную на сторону АС, если стороны квадратных клеток равны √10...