Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1705 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 860 б
2 апреля 2023 16:57
752
Сколько существует возрастающихарифметических прогрессий из 25
различных натуральных чисел, в которых
все числа не больше 1000?
Срочно!!
1
ответ
Ответ:
20336
Объяснение:
По условию все члены арифметических прогрессий различные натуральные числа, откуда следует d∈N.
Чтобы получить возрастающую арифметическую прогрессию наименьшее значение разности d можем выбрать 1.
Определим наибольшее значение d из условия:
a₁=1, n=25, a₂₅≤1000.
Известно, что общий член арифметической прогрессии можно определить по формуле: aₓ=a₁+(x-1)•d.
Отсюда
a₂₅=1+(25-1)•d≤1000 ⇔ 24•d≤999 ⇔ d≤41,625.
Так как d натуральное число, то наибольшее значение d равен 41.
При d = 41 определим наибольшее значение a₁ из условия:
a₂₅≤1000, n=25, d = 41.
Тогда
a₂₅=a₁+(25-1)•41≤1000 ⇔ a₁≤1000-984=16.
Отсюда, при d = 41 наименьшее значение a₁=1 и наибольшее значение a₁=16, то есть при d = 41 получаем всего 16 возрастающих арифметических прогрессий из 25 различных натуральных чисел.
Нетрудно увидеть, что при d = 1 наименьшее значение a₁=1 и наибольшее значение a₁=976, то есть при d = 1 получаем всего 976 возрастающих арифметических прогрессий из 25 различных натуральных чисел.
Теперь определим шаг изменений наибольших значений a₁:
(976-16)/(41-1)=960/40=24.
Значит, следующую получаем арифметическую прогрессию из наибольших значений a₁:
b₁=16, d=24, b₄₁=976.
Сумма первых x членов арифметической прогрессии вычисляется по формуле
Sₓ=(b₁+bₓ)•x/2.
Вычислим сумму первых 41 членов арифметической прогрессии :
S₄₁=(b₁+b₄₁)•41/2=(16+976)•41/2=992•41/2=496•41=20336.
20336
Объяснение:
По условию все члены арифметических прогрессий различные натуральные числа, откуда следует d∈N.
Чтобы получить возрастающую арифметическую прогрессию наименьшее значение разности d можем выбрать 1.
Определим наибольшее значение d из условия:
a₁=1, n=25, a₂₅≤1000.
Известно, что общий член арифметической прогрессии можно определить по формуле: aₓ=a₁+(x-1)•d.
Отсюда
a₂₅=1+(25-1)•d≤1000 ⇔ 24•d≤999 ⇔ d≤41,625.
Так как d натуральное число, то наибольшее значение d равен 41.
При d = 41 определим наибольшее значение a₁ из условия:
a₂₅≤1000, n=25, d = 41.
Тогда
a₂₅=a₁+(25-1)•41≤1000 ⇔ a₁≤1000-984=16.
Отсюда, при d = 41 наименьшее значение a₁=1 и наибольшее значение a₁=16, то есть при d = 41 получаем всего 16 возрастающих арифметических прогрессий из 25 различных натуральных чисел.
Нетрудно увидеть, что при d = 1 наименьшее значение a₁=1 и наибольшее значение a₁=976, то есть при d = 1 получаем всего 976 возрастающих арифметических прогрессий из 25 различных натуральных чисел.
Теперь определим шаг изменений наибольших значений a₁:
(976-16)/(41-1)=960/40=24.
Значит, следующую получаем арифметическую прогрессию из наибольших значений a₁:
b₁=16, d=24, b₄₁=976.
Сумма первых x членов арифметической прогрессии вычисляется по формуле
Sₓ=(b₁+bₓ)•x/2.
Вычислим сумму первых 41 членов арифметической прогрессии :
S₄₁=(b₁+b₄₁)•41/2=(16+976)•41/2=992•41/2=496•41=20336.
0
·
Хороший ответ
4 апреля 2023 16:57
Остались вопросы?
Еще вопросы по категории Алгебра
A1)запишите в виде выражения:частное от деления суммы чисел 37 и 19 на 8,A2Какое значение принимает сумма x+y,если x=-1,3,y=-2,7 .A3) какое значение в...
упростить выражение ? .......
Решите уравнение, 11 класс, сборник подготовки к ЕГЭ...
Найти значение функции у=3х-6,если значение аргумента равно -1...
Найдите tg(a+5п/2) если tga=0,4...
Все предметы