Лучшие помощники
- Megamozg 2190 б
- Matalya1 1800 б
- DevAdmin 1695 б
- arkasha_bortnikov 860 б
- Dwayne_Johnson 845 б
2 апреля 2023 19:30
1044
Докажите что выражение (n-6)(n+8)-2(n-25) при любом значении n принимает положительное значение.
1
ответ
-----
(n-6)(n+8)-2(n-25)=n^2+2n-48-2n+50=n^2+2
Очевидно, что при раскрытии скобки мы получаем n в квадрате плюс 2.
А число в квадрате не может быть отрицательным, значит n^2+2 больше или равно 2 при любых n
(n-6)(n+8)-2(n-25)=n^2+2n-48-2n+50=n^2+2
Очевидно, что при раскрытии скобки мы получаем n в квадрате плюс 2.
А число в квадрате не может быть отрицательным, значит n^2+2 больше или равно 2 при любых n
0
·
Хороший ответ
4 апреля 2023 19:30
Остались вопросы?
Еще вопросы по категории Алгебра
Первый велосипедист выехал из посёлка по шоссе со скоростью 24 км/ч. Через час после него со скоростью 21 км/ч из того же посёлка в том же направлении...
Решите уравнение x3- 3x2- 8x+24=0...
Решите пожалуйста....,...
Розв`яжіть рівняння sin2x+sinx= 2cosx+1...
Запишите десятичную дробь, равную сумме . 3*10 в минус 1+1*10 в минус 2+5*10 в минус 4...
Все предметы