Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
2 апреля 2023 19:54
1198
концы отрезка отстоят от плоскости а на расстояниях 12 и 8 см. найдите расстояние от середины отрезка до плоскости а.
1
ответ
Ответ:
10 см.
Объяснение:
Искомое расстояние - средняя линия трапеции с основаниями, рваными 12см и 8см. Найдем по формуле: (12+8)/2 =10см.
Или так:
Пусть отрезок АВ, концы отрезка проецируются на плоскость в точки А1 и В1 соответственно. АА1 = 8см,
ВВ1 = 12см. Фигура АВВ1А1 лежит в одной плоскости, пересекающей данную по прямой А1В1.
Проведем прямую АА2 параллельно А1В1. Тогда в прямоугольном треугольнике АВА2 катет ВА2 равен
ВА2 = 12 - 8 = 4 см.
Средняя линия ММ2 этого треугольника равна 2см.
Тогда расстояние от середины отрезка АВ до плоскости равно
ММ1 = ММ2 + М2М1 = 2 + 8 =10см.
10 см.
Объяснение:
Искомое расстояние - средняя линия трапеции с основаниями, рваными 12см и 8см. Найдем по формуле: (12+8)/2 =10см.
Или так:
Пусть отрезок АВ, концы отрезка проецируются на плоскость в точки А1 и В1 соответственно. АА1 = 8см,
ВВ1 = 12см. Фигура АВВ1А1 лежит в одной плоскости, пересекающей данную по прямой А1В1.
Проведем прямую АА2 параллельно А1В1. Тогда в прямоугольном треугольнике АВА2 катет ВА2 равен
ВА2 = 12 - 8 = 4 см.
Средняя линия ММ2 этого треугольника равна 2см.
Тогда расстояние от середины отрезка АВ до плоскости равно
ММ1 = ММ2 + М2М1 = 2 + 8 =10см.

0
·
Хороший ответ
4 апреля 2023 19:54
Остались вопросы?
Еще вопросы по категории Геометрия
В окружности с центром O проведены диаметр АС и хорда BD пересекаются в точке Mпричем BM =DM Угол BAC =35 градусам Найдите Угол BAD...
Срочно!!! Геометрия sin 150°...
сторона правильного треугольника равна корень из 3. найдите радиус окружности вписанной в этот треугольник....
Радиус окружности описанной около квадрата равен 36 √ 2 найдите длину стороны этого квадрата...
Как найти высоту пирамиды если все его стороны известны подскажите формулу пожалуйста))))...