Лучшие помощники
2 апреля 2023 20:12
685

Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении 4:3, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой эта биссектриса проведена, равна 9 см.

1 ответ
Посмотреть ответы
Пусть в треугольнике ABC проведены биссектрисы AA1, BB1, CC1, которые пересекаются в точке О. По условию, АО/А1О=4/3. Треугольники ABO и A1BO имеют одинаковую высоту, поэтому отношение их площадей равно 4/3. Кроме того, существует формула площади S=1/2ab*sin(a), из которой находим, что \fracB*BO*sin(A_BO)}=\frac=\frac}. Аналогично получаем, что AC/A1C=4/3. Сложим эти равенства, получим, что 4/3=(AB+AC)/BC, BC=9, AB+AC=12, p=21.
0
·
Хороший ответ
4 апреля 2023 20:12
Остались вопросы?
Найти нужный