Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1705 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 860 б
2 апреля 2023 23:29
512
Найти ортогональную проекцию точки (2;-3;1) на плоскость -x+3y-3z-5.
1
ответ
Перпендикуляр из заданной точки (2;-3;1) на плоскость -x+3y-3z-5 = 0 это прямая с направляющим вектором, равным нормальному вектору плоскости ( это (-1; 3; -3)).
По заданной точке и такому вектору получаем уравнение прямой, перпендикулярной заданной плоскости:
(x - 2)/(-1) = (y + 3)/3 = (z - 1)/(-3).
Теперь можно найти ортогональную проекцию точки (2;-3;1) на плоскость -x+3y-3z-5 = 0 как точку пересечения прямой с этой плоскостью.
Уравнение прямой выразим в параметрическом виде.
(x - 2)/(-1) = (y + 3)/3 = (z - 1)/(-3) = t.
x = -t + 2,
y = 3t - 3,
z = -3t + 1 и подставим в уравнение плоскости -x+3y-3z-5 = 0.
t - 2+ 9t - 9 +9t - 3 - 5 = 0,
19t - 19 = 0, отсюда t = 19/19 = 1.
Подставим t в параметрические уравнения прямой и получаем искомые координаты проекции точки на плоскость.
x = -t + 2 = -1 + 2 = 1,
y = 3t - 3 = 3*1 - 3 = 0,
z = -3t + 1 =-3*1 + 1 = -2.
Ответ: точка (1; 0; -2).
По заданной точке и такому вектору получаем уравнение прямой, перпендикулярной заданной плоскости:
(x - 2)/(-1) = (y + 3)/3 = (z - 1)/(-3).
Теперь можно найти ортогональную проекцию точки (2;-3;1) на плоскость -x+3y-3z-5 = 0 как точку пересечения прямой с этой плоскостью.
Уравнение прямой выразим в параметрическом виде.
(x - 2)/(-1) = (y + 3)/3 = (z - 1)/(-3) = t.
x = -t + 2,
y = 3t - 3,
z = -3t + 1 и подставим в уравнение плоскости -x+3y-3z-5 = 0.
t - 2+ 9t - 9 +9t - 3 - 5 = 0,
19t - 19 = 0, отсюда t = 19/19 = 1.
Подставим t в параметрические уравнения прямой и получаем искомые координаты проекции точки на плоскость.
x = -t + 2 = -1 + 2 = 1,
y = 3t - 3 = 3*1 - 3 = 0,
z = -3t + 1 =-3*1 + 1 = -2.
Ответ: точка (1; 0; -2).
0
·
Хороший ответ
4 апреля 2023 23:29
Остались вопросы?
Еще вопросы по категории Геометрия
Даны компланарные векторы ~a, ~b и ~c, причем a = 3, b = 2, c = 5, ( c~a,~b) = 60◦ и ( ~cb,~c) = 60◦ . Построить вектор ~u = ~a + ~b − ~c и вычислить...
На рисунке изображен треугольник АВС. Укажите что Медиана ,биссектриса, высота АА1- ВВ1- СС1-...
На стороне AC треугольника ABC отмечена точка D так что AD=2 DC=7. Площадь треугольника ABC равна 27. Найдите площадь треугольника BCD пожалуйста...
Найдите радиус сферы, если ее площадь равна 36п см2...
Осевым сечением цилиндра является квадрат, площадь которого равна 144 см^2 . Вычислите площадь боковой поверхности цилиндра...
Все предметы