Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 865 б
3 апреля 2023 00:48
442
Даны две противоположные вершины квадрата А(3;0) и С(-4; 1). Найти две его другие вершины
1
ответ
Найдем координаты вектора АС (диагональ квадрата) и его модуль.
Координаты вектора равны разности соответствующих координат точек его конца и начала. Длина вектора (модуль), заданного координатами, равна корню квадратному из суммы квадратов его координат.
В нашем случае: АС{-7;1} и |AC|=√(49+1)=√50.
Нам дан квадрат. Его стороны равны. Значит |AB|=|BC|=5. (по Пифагору).
Пусть вершина В квадрата имеет координаты Хb и Yb.
Тогда координаты вектора АВ,
а координаты вектора СВ.
Их модули соответственно
|AB|=√[(Xb-3)²+Yb²)] и |СВ|=√[(Xb-4)²+(Yb-1)²] равны между собой и равны 5.
Равны и квадраты модулей, то есть:
Xb²-6Xb+9+Yb²=Xb²-8Xb+16+Yb²-Yb+1 или 14Xb-2Yb+8=0 отсюда Yb=7Xb+4.
Так как квадрат модуля АВ равен 25, имеем:
Xb²-6Xb+9+(7Xb+4)²=25. Отсюда Xb²-6Xb+9+49Xb²+56Xb+16-25=0. Отсюда Х1=-1 и X2=0 (не удовлетворяет). Итак, точка В имеет координаты Xb=-1 и Yb=7*(-1)+4=-3.
То есть имеем: В(-1;-3).
найдем координаты точки О пересечения диагоналей. Это точка О - середина диагонали АС (свойство диагоналей).
Координаты середины отрезка AС равны сумме координат начала и конца отрезка, деленной пополам. то есть О((3-4)/3;(1+0)/2) или О(-0,5;0,5).
По этой же формуле Xo=(Xb+Xd)/2 и Yo=(Yb+Yd)/2. Подставим известные значения и получим: Xd=0 и Yd=4.
Ответ: вершины квадрата АВСD имеют координаты В(-1;-3) и D(0;4).
Координаты вектора равны разности соответствующих координат точек его конца и начала. Длина вектора (модуль), заданного координатами, равна корню квадратному из суммы квадратов его координат.
В нашем случае: АС{-7;1} и |AC|=√(49+1)=√50.
Нам дан квадрат. Его стороны равны. Значит |AB|=|BC|=5. (по Пифагору).
Пусть вершина В квадрата имеет координаты Хb и Yb.
Тогда координаты вектора АВ,
а координаты вектора СВ.
Их модули соответственно
|AB|=√[(Xb-3)²+Yb²)] и |СВ|=√[(Xb-4)²+(Yb-1)²] равны между собой и равны 5.
Равны и квадраты модулей, то есть:
Xb²-6Xb+9+Yb²=Xb²-8Xb+16+Yb²-Yb+1 или 14Xb-2Yb+8=0 отсюда Yb=7Xb+4.
Так как квадрат модуля АВ равен 25, имеем:
Xb²-6Xb+9+(7Xb+4)²=25. Отсюда Xb²-6Xb+9+49Xb²+56Xb+16-25=0. Отсюда Х1=-1 и X2=0 (не удовлетворяет). Итак, точка В имеет координаты Xb=-1 и Yb=7*(-1)+4=-3.
То есть имеем: В(-1;-3).
найдем координаты точки О пересечения диагоналей. Это точка О - середина диагонали АС (свойство диагоналей).
Координаты середины отрезка AС равны сумме координат начала и конца отрезка, деленной пополам. то есть О((3-4)/3;(1+0)/2) или О(-0,5;0,5).
По этой же формуле Xo=(Xb+Xd)/2 и Yo=(Yb+Yd)/2. Подставим известные значения и получим: Xd=0 и Yd=4.
Ответ: вершины квадрата АВСD имеют координаты В(-1;-3) и D(0;4).

0
·
Хороший ответ
5 апреля 2023 00:48
Остались вопросы?
Еще вопросы по категории Геометрия
Сторона равностороннего треугольника равна 12 корень из 3 Найдите его медиану....
периметр равнобедренного треугольника равен 25 см. разность двух сторон равна 4 см, а один из его внешних углов-острый. найдите стороны треугольника...
Высота, проведенная к основанию равнобедренного треугольника, равна 9 см, а само основание равно, 24 см. Найдите радиусы вписанной в треугольник и опи...
Сторона ромба равна 5 см, а одна из его диагоналей 8 см. найти площадь ромба...
Дан треугольник АВС через точку О на стороне АВ и точку Р на стороне СВ проведена прямая,причем ОР паралельно АС.Докажите что треугольники АВС и ОВР п...