Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1700 б
- arkasha_bortnikov 890 б
- Dwayne_Johnson 860 б
Шар Ключевые слова: шар, сфера, центр шара, диаметр, касательная плоскость, плоскость симметрии,
Шаром называется тело, которое состоит из всех точек пространства, находящихся на расстоянии, не большем данного, от данной точки.
Эта точка называется центром шара, а данное расстояние называется радиусом шара. Граница шара называется шаровой поверхностью или сферой. Любой отрезок, соединяющий центр шара с точкой шаровой поверхности, называется радиусом. Отрезок, соединяющий две точки шаровой поверхности и проходящий через центр шара, называется диаметром. Концы любого диаметра называются диаметрально-противоположными точками шара. Шар, так же, как цилиндр и конус, является телом вращения. Он получается при вращении полукруга вокруг его диаметра как оси. Всякое сечение шара плоскостью есть круг. Центр этого круга есть основание перпендикуляра, опущенного из центра на секущую плоскость. Плоскость, проходящая через центр шара, называется диаметральной плоскостью. Сечение шара диаметральной плоскостью называется большим кругом, а сечение сферы - большой окружностью Любая диаметральная плоскость шара являются его плоскостью симметрии. Центр шара является его центром симметрии Плоскость, проходящая через точку шаровой поверхности и перпендикулярная радиусу, проведенного в эту точку, называется касательной плоскостью. Данная точка называется точкой касания. Касательная плоскость имеет с шаром только одну общую точку - точку касания. Прямая, проходящая через заданную точку шаровой поверхности перпендикулярно к радиусу, проведенному в эту точку, называется касательной. Через любую точку шаровой поверхности проходит бесконечно много касательных, причем все они лежат в касательной плоскости шара.
Теорема 20.3. Всякое сечение шара плоскостью есть круг. Центр этого круга есть основание перпендикуляра, опущенного из центра шара на секущую плоскость.
Доказательство. Пусть — секущая плоскость и О — центр шара (рис. 453). Опустим перпендикуляр из центра шара на плоскость и обозначим через О' основание этого перпендикуляра.
Пусть X — произвольная точка шара, принадлежащая плоскости . По теореме Пифагора 0X2 = 00'2+О'Х2. Так как ОХ не больше радиуса R шара, то, т. е. любая точка сечения шара плоскостью находится от точки О' на расстоянии, не большем , следовательно, она принадлежит кругу с центром О' и радиусом .
Обратно: любая точка X этого круга принадлежит шару. А это значит, что сечение шара плоскостью есть круг с центром в точке О'. Теорема доказана.
Плоскость, проходящая через центр шара, называется диаметральной плоскостью. Сечение шара диаметральной плоскостью называется большим кругом (рис. 454), а сечение сферы — большой окружностью.
Задача (30). Через середину радиуса шара проведена перпендикулярная ему плоскость. Как относится площадь полученного сечения к площади большого круга?
Решение. Если радиус шара R (рис. 455), то радиус круга в сечении будет
.
Отношение площади этого круга к площади большого круга равно
Шаром называется тело, которое состоит из всех точек пространства, находящихся на расстоянии, не большем данного, от данной точки.
Эта точка называется центром шара, а данное расстояние называется радиусом шара. Граница шара называется шаровой поверхностью или сферой. Любой отрезок, соединяющий центр шара с точкой шаровой поверхности, называется радиусом. Отрезок, соединяющий две точки шаровой поверхности и проходящий через центр шара, называется диаметром. Концы любого диаметра называются диаметрально-противоположными точками шара. Шар, так же, как цилиндр и конус, является телом вращения. Он получается при вращении полукруга вокруг его диаметра как оси. Всякое сечение шара плоскостью есть круг. Центр этого круга есть основание перпендикуляра, опущенного из центра на секущую плоскость. Плоскость, проходящая через центр шара, называется диаметральной плоскостью. Сечение шара диаметральной плоскостью называется большим кругом, а сечение сферы - большой окружностью Любая диаметральная плоскость шара являются его плоскостью симметрии. Центр шара является его центром симметрии Плоскость, проходящая через точку шаровой поверхности и перпендикулярная радиусу, проведенного в эту точку, называется касательной плоскостью. Данная точка называется точкой касания. Касательная плоскость имеет с шаром только одну общую точку - точку касания. Прямая, проходящая через заданную точку шаровой поверхности перпендикулярно к радиусу, проведенному в эту точку, называется касательной. Через любую точку шаровой поверхности проходит бесконечно много касательных, причем все они лежат в касательной плоскости шара.
Теорема 20.3. Всякое сечение шара плоскостью есть круг. Центр этого круга есть основание перпендикуляра, опущенного из центра шара на секущую плоскость.
Доказательство. Пусть — секущая плоскость и О — центр шара (рис. 453). Опустим перпендикуляр из центра шара на плоскость и обозначим через О' основание этого перпендикуляра.
Пусть X — произвольная точка шара, принадлежащая плоскости . По теореме Пифагора 0X2 = 00'2+О'Х2. Так как ОХ не больше радиуса R шара, то, т. е. любая точка сечения шара плоскостью находится от точки О' на расстоянии, не большем , следовательно, она принадлежит кругу с центром О' и радиусом .
Обратно: любая точка X этого круга принадлежит шару. А это значит, что сечение шара плоскостью есть круг с центром в точке О'. Теорема доказана.
Плоскость, проходящая через центр шара, называется диаметральной плоскостью. Сечение шара диаметральной плоскостью называется большим кругом (рис. 454), а сечение сферы — большой окружностью.
Задача (30). Через середину радиуса шара проведена перпендикулярная ему плоскость. Как относится площадь полученного сечения к площади большого круга?
Решение. Если радиус шара R (рис. 455), то радиус круга в сечении будет
.
Отношение площади этого круга к площади большого круга равно
0
·
Хороший ответ
5 апреля 2023 02:15
Остались вопросы?
Еще вопросы по категории Алгебра
Правильную игральную кость бросают бросают дважды. Опишите словамм событие, отмеченное в таблице эксперимента: Б)...
Петя хочет положить 149 монет в клетки доски 2×150 так, чтобы не было двух монет в клетках с общей стороной, и в каждой клетке лежало не более одной м...
Лёгкая задача! Две машинистки должны были напечатать по 60 страниц каждая. Вторая машинистка печатала за 1 час на 2 страницы меньше, поэтому закончила...
У короля и королевы было три сына и несколько дочерей (хотя бы одна). 1-го сентября некоторого года король королева заметили, что им обоим по 55 лет,...
Sin 35° cos 25° - sin 20° cos 10° вычислить...
Все предметы