Лучшие помощники
- Megamozg 2190 б
- Matalya1 1800 б
- DevAdmin 1695 б
- arkasha_bortnikov 860 б
- Dwayne_Johnson 845 б
3 апреля 2023 03:49
1276
Между сторонами угла АОВ, равного 140°, проведены лучи ОС и ом так, что угол АОСна 16° меньше угла ВОС, а OM — биссектриса угла Вос. Найдите величину угла COM.
Ответ дайте в градусах.
Запишите решение и ответ.
1
ответ
Ответ:
∠СОМ=39°
Объяснение:
Дано: ∠AOВ=140°, ОМ - биссектриса
Найти: ∠СОМ
Пусть угол АОС равен х градусов, тогда угол ВОС равен х+16°. Так как сумма этих углов равна углу АОВ, составляем уравнение:
∠АОС+∠ВОС=∠AOВ
х+х+16=140
2х=140-16
2х=124
х=62
∠АОС=62°, ∠ВОС=62°+16°=78°.
Так как ОМ - биссектриса ∠ВОС, то по свойству биссектрисы:
∠СОМ=½•∠ВОС=½•78°=39°.
∠СОМ=39°
Объяснение:
Дано: ∠AOВ=140°, ОМ - биссектриса
Найти: ∠СОМ
Пусть угол АОС равен х градусов, тогда угол ВОС равен х+16°. Так как сумма этих углов равна углу АОВ, составляем уравнение:
∠АОС+∠ВОС=∠AOВ
х+х+16=140
2х=140-16
2х=124
х=62
∠АОС=62°, ∠ВОС=62°+16°=78°.
Так как ОМ - биссектриса ∠ВОС, то по свойству биссектрисы:
∠СОМ=½•∠ВОС=½•78°=39°.
Величина угла СОМ равна 39°.
0
·
Хороший ответ
5 апреля 2023 03:49
Остались вопросы?
Еще вопросы по категории Геометрия
Что такое середина отрезка определение...
1. AB = BC = AC, MA = MB = MC = 13, d(M, AB) = 12, Me ABC. Найдите Sавс- 2. ABCD -- квадрат, MA = MB = MC = MD = 10, AB= 6 /2, Me ABC. Найдите d (M, A...
Большая высота параллелограмма равна 6. Найдите площадь параллелограмма, если биссектриса одного из его углов делит сторону параллелограмма на отрезки...
Какое наименьшее число ребер может иметь многогранник...
Найдите, чему равна площадь боковой поверхности усеченного конуса, если радиусы его оснований 5 и 9 см, а образующая равна 5 см....
Все предметы