Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 860 б
3 апреля 2023 04:36
686
Периметр прямоугольника равен 22 а диагональ равна корню из 61.Найдите площадь этого прямоугольника. Найдите периметр прямоугольника если его площадь равна 54, а отношение соседних сторон равно 2:3
1
ответ
Р=22 = 2(а+б)
а+б=11 см
по теореме пифагора
а^2+b^2 = c^2=61
a=11-b
(11-b)^2 + b^2 = 121-22b+b^2+b^2 = 61
2b^2 - 22b + 60 = 0
b^2 - 11b + 30 = 0
b1=5
b2=6
S=5*6=30 кв см
2) S=a*b
стороны относятся как 2:3, значит a=2x , b = 3x
S=2x*3x=6x^2=54
x^2=9
x1=3,
x2=-3 <0 отбрасываем
Р=2(а+б) = 2(2х+3х)=2*5х=10х=10*3=30 см
а+б=11 см
по теореме пифагора
а^2+b^2 = c^2=61
a=11-b
(11-b)^2 + b^2 = 121-22b+b^2+b^2 = 61
2b^2 - 22b + 60 = 0
b^2 - 11b + 30 = 0
b1=5
b2=6
S=5*6=30 кв см
2) S=a*b
стороны относятся как 2:3, значит a=2x , b = 3x
S=2x*3x=6x^2=54
x^2=9
x1=3,
x2=-3 <0 отбрасываем
Р=2(а+б) = 2(2х+3х)=2*5х=10х=10*3=30 см
0
·
Хороший ответ
5 апреля 2023 04:36
Остались вопросы?
Еще вопросы по категории Геометрия
Вершины треугольника АВС имеют координаты А(-2;0;1) В(-1;2;3)С(8;-4;9)Найдите координаты вектора ВМ,если ВМ-медиана треугольника...
Найдите площадь параллелограмма построенного на векторах а(1;2) b(-3;2)...
Помогите, пожалуйста.) Основание перпендикуляра, проведенного из вершины прямоугольника на его диагональ, делит эту диагональ на отрезки длинной 9 см...
Один из острых углов прямоугольного треугольника равен 60 градусов , а сумма меньшего катета и гипотенузы равна 45 см. Определите чему равен второй ос...
Что такое масштабная линейка?Чем она отличается от обычной линейки?...