Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1705 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 860 б
3 апреля 2023 05:55
893
Свойства вписанного угла. Формулировка и доказательство
2
ответа
Напомним некоторые определения
Определение:
Окружностью с центром в точке О и радиусом R называют множество всех точек плоскости, удаленных от точки О на расстояние R (см. Рис. 1).
Рис. 1
Часть окружности называется дугой.
Дуга имеет угловое измерение.
Градусная мера дуги равна градусной мере соответствующего центрального угла :
Рассмотрим примеры:
Рис. 2
Определение
Угол, вершина которого лежит на окружности, а стороны пересекают окружность, называется вписанным.
Рис. 3
Задана окружность с центром О, вершина А лежит на окружности, стороны АВ и АС угла пересекают окружность в точках В и С, угол называется вписанным. Он опирается на дугу , эта дуга расположена внутри угла (см. Рис. 3).
2. Теорема о вписанном углеВписанный угол измеряется половиной дуги, на которую он опирается (см. Рис. 4).
Рис. 4
Доказательство:
Рассмотрим несколько случаев.
Случай 1: точка О принадлежит лучу АС (см. Рис. 5).
Рис. 5
Доказать, что
Обозначим угол через , тогда угол также будет равен , так как треугольник равнобедренный, его стороны ОВ и ОА равны как радиусы окружности. Угол является внешним для треугольника , внешний угол равен сумме двух других углов, не смежных с ним, получаем: , то есть угловое измерение дуги есть . Таким образом, мы доказали, что вписанный угол равен половине измерения дуги, на которую он опирается.
Случай 2: точка О лежит внутри вписанного угла (см. Рис. 6).
Рис. 6
Доказать, что
Доказательство сводится к предыдущему случаю. Проведем диаметр AD, обозначим угол за и тогда дуга равна (объяснение см. случай 1). Угол за , тогда дуга равна (объяснение см. случай 1). Вся дуга равна:
Угол в свою очередь, равен .
Таким образом, мы доказали, что вписанный угол равен половине дуги, на которую он опирается.
Случай 3: точка О находится вне вписанного угла (см. Рис. 7).
Рис. 7
Доказать, что
Доказательство снова сводится к первому случаю. Проведем диаметр AD, обозначим угол через , тогда дуга (объяснение см. случай 1). Угол обозначим через , тогда дуга равна (объяснение см. случай 1). Дуга является разностью большой дуги и дуги :
Вписанный угол равен . Таким образом, мы доказали, что вписанный угол равен половине дуги, на которую он опирается.
Итак, теорема полностью доказана, все случаи рассмотрены. И теперь из этого вытекают важные следствия.
3. Следствия теоремы о вписанном углеСледствие 1:
Вписанные углы, опирающиеся на одну и ту же дугу, равны между собой (см. Рис. 8).
Рис. 8
Угол равен , он вписанный и опирается на дугу , значит, дуга равна . Но на эту же дугу опираются много других углов, например, углы и , данные углы измеряются половиной градусной меры дуги, значит, они равны , как и угол .
Таким образом, получаем:
Следствие 2
Вписанные углы, опирающиеся на диаметр, прямые (см. Рис. 9).
Рис. 9
Теорема о вписанном угле является ключом к доказательству многих других теорем и к решению многих задач.
4. Теорема о хордахПроизведение отрезков каждой из двух пересекающихся хорд есть величина постоянная.
Рис. 10
Доказать, что
Доказательство:
Рассмотрим треугольники и (см. Рис. 10). Данные треугольники подобны по равенству двух углов: равны вертикальные углы и ; вписанные углы и опираются на одну и ту же дугу . Выпишем соотношение подобия:
Применим свойство пропорции и преобразуем выражение:
, что и требовалось доказать.
Определение:
Окружностью с центром в точке О и радиусом R называют множество всех точек плоскости, удаленных от точки О на расстояние R (см. Рис. 1).
Рис. 1
Часть окружности называется дугой.
Дуга имеет угловое измерение.
Градусная мера дуги равна градусной мере соответствующего центрального угла :
Рассмотрим примеры:
Рис. 2
Определение
Угол, вершина которого лежит на окружности, а стороны пересекают окружность, называется вписанным.
Рис. 3
Задана окружность с центром О, вершина А лежит на окружности, стороны АВ и АС угла пересекают окружность в точках В и С, угол называется вписанным. Он опирается на дугу , эта дуга расположена внутри угла (см. Рис. 3).
2. Теорема о вписанном углеВписанный угол измеряется половиной дуги, на которую он опирается (см. Рис. 4).
Рис. 4
Доказательство:
Рассмотрим несколько случаев.
Случай 1: точка О принадлежит лучу АС (см. Рис. 5).
Рис. 5
Доказать, что
Обозначим угол через , тогда угол также будет равен , так как треугольник равнобедренный, его стороны ОВ и ОА равны как радиусы окружности. Угол является внешним для треугольника , внешний угол равен сумме двух других углов, не смежных с ним, получаем: , то есть угловое измерение дуги есть . Таким образом, мы доказали, что вписанный угол равен половине измерения дуги, на которую он опирается.
Случай 2: точка О лежит внутри вписанного угла (см. Рис. 6).
Рис. 6
Доказать, что
Доказательство сводится к предыдущему случаю. Проведем диаметр AD, обозначим угол за и тогда дуга равна (объяснение см. случай 1). Угол за , тогда дуга равна (объяснение см. случай 1). Вся дуга равна:
Угол в свою очередь, равен .
Таким образом, мы доказали, что вписанный угол равен половине дуги, на которую он опирается.
Случай 3: точка О находится вне вписанного угла (см. Рис. 7).
Рис. 7
Доказать, что
Доказательство снова сводится к первому случаю. Проведем диаметр AD, обозначим угол через , тогда дуга (объяснение см. случай 1). Угол обозначим через , тогда дуга равна (объяснение см. случай 1). Дуга является разностью большой дуги и дуги :
Вписанный угол равен . Таким образом, мы доказали, что вписанный угол равен половине дуги, на которую он опирается.
Итак, теорема полностью доказана, все случаи рассмотрены. И теперь из этого вытекают важные следствия.
3. Следствия теоремы о вписанном углеСледствие 1:
Вписанные углы, опирающиеся на одну и ту же дугу, равны между собой (см. Рис. 8).
Рис. 8
Угол равен , он вписанный и опирается на дугу , значит, дуга равна . Но на эту же дугу опираются много других углов, например, углы и , данные углы измеряются половиной градусной меры дуги, значит, они равны , как и угол .
Таким образом, получаем:
Следствие 2
Вписанные углы, опирающиеся на диаметр, прямые (см. Рис. 9).
Рис. 9
Теорема о вписанном угле является ключом к доказательству многих других теорем и к решению многих задач.
4. Теорема о хордахПроизведение отрезков каждой из двух пересекающихся хорд есть величина постоянная.
Рис. 10
Доказать, что
Доказательство:
Рассмотрим треугольники и (см. Рис. 10). Данные треугольники подобны по равенству двух углов: равны вертикальные углы и ; вписанные углы и опираются на одну и ту же дугу . Выпишем соотношение подобия:
Применим свойство пропорции и преобразуем выражение:
, что и требовалось доказать.
0
·
Хороший ответ
5 апреля 2023 05:55
Вписанный угол измеряется половиной дуги на которую он опирается . Доказательство : Пусть угол АВС - вписанный угол окружности с центром О, опирающийся на душу АС. Докажем, что угол АОС =1/2 дуги АС.
0
5 апреля 2023 05:55
Остались вопросы?
Еще вопросы по категории Геометрия
См работа - "Центральные и вписанные углы"...
Найдите углы параллелограмма, если они относятся как 1: 2...
Уравнение окружности. Урок 1 Найди уравнение данной окружности. (x – 3)2 + (y + 1)2 = 4...
І. Какие фигуры называются равными? 2. Какие из фигур на рисунке 7 равны? 3 Какие из букв равны как геометрические фигуры? ...
Смежные и вертикальные углы, их свойства. Урок 3. Повторение Установи соответствие. Чем больше один из смежных углов, Для одного угла смежные ему дв...
Все предметы