Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
3 апреля 2023 11:34
907
Биссектриса CM треугольника ABC делит сторону AB на отрезки AM=10 и MB=18 . Касательная к описанной окружности треугольника ABC , проходящая через точку C , пересекает прямую AB в точке D . Найдите CD .
1
ответ
Треугольники ADC и CDB подобны по двум углам (<DCА=<CВА = половине градусной меры дуги АС согласно теоремам об углах вписанном - АВС и между касательной и хордой - DCA, а <D у них общий).
Из подобия имеем: АС/ВС=DC/BD=AD/DC=10/18 =5/9 (по теореме о биссектрисе угла, делящей противоположную сторону в отношении прилежащих сторон - АС/ВС=АМ/МВ).
Тогда из этих соотношений:
DC=(9/5)*AD (1)
DC=(5/9)*BD (2).
АВ=28 (дано), AD = BD-AB = ВD-28.
Приравняем (1) и (2):
(9/5)*(ВD-28)=(5/9)*BD
BD(9/5-5/9)=28*9/5 =>
BD*56/45 = 28*81/45 =>
BD = 28*81/56 = 81/2 = 40,5 ед.
Тогда из (2): СD=(5/9)*BD = 22,5 ед.
Из подобия имеем: АС/ВС=DC/BD=AD/DC=10/18 =5/9 (по теореме о биссектрисе угла, делящей противоположную сторону в отношении прилежащих сторон - АС/ВС=АМ/МВ).
Тогда из этих соотношений:
DC=(9/5)*AD (1)
DC=(5/9)*BD (2).
АВ=28 (дано), AD = BD-AB = ВD-28.
Приравняем (1) и (2):
(9/5)*(ВD-28)=(5/9)*BD
BD(9/5-5/9)=28*9/5 =>
BD*56/45 = 28*81/45 =>
BD = 28*81/56 = 81/2 = 40,5 ед.
Тогда из (2): СD=(5/9)*BD = 22,5 ед.

0
·
Хороший ответ
5 апреля 2023 11:34
Остались вопросы?
Еще вопросы по категории Геометрия
помогите пожалуйста,в треугольнике ABC проведена биссектриса AL, угол ALC равен 100 градусов, угол ABC равен 80 градусов. Найдите угол ACB. если можно...
Вокруг равностороннего треугольника, длина стороны которого равна 57√3, описана окружность. Найди её радиус....
Найдите углы ромба с диагоналями 2√3 и 2...
Используя рисунок, укажите верные утверждения...
Равные отрезки KL и NM лежат на параллельных прямых, КМ – секущая. Докажите, что треугольники KLM и MNK равны....