Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 860 б
3 апреля 2023 12:01
522
Вычислить предел:lim( x стремится к 2) если x^3-8 разделить на x-2
1
ответ
Lim(x==>2) (x^3-8)/x-2.
Разлагаем на множители x^3-8 = (x-2) (x^2+2x+4)
получается в дроби (х-2) сокращаются.
остаётся lim (x==>2) (x^2+2x+4).
Подставляем 2, получаем предел равен 12.
Разлагаем на множители x^3-8 = (x-2) (x^2+2x+4)
получается в дроби (х-2) сокращаются.
остаётся lim (x==>2) (x^2+2x+4).
Подставляем 2, получаем предел равен 12.
0
·
Хороший ответ
5 апреля 2023 12:01
Остались вопросы?
Еще вопросы по категории Алгебра
Сколько существует пятизначных чисел ( без повторения цифр) , у которых вторая цифра в записи 4?...
Cos(п/2+x)=sin(-п/6)...
Задумали число от пятой части этого числа отняли восьмую часть задуманного числа и полвчили 36...
Sin (1/2 arctg 3/4 - 2 arccos 1/√5)...
Решите пожалуйста Корень из 0,5*1/50...