Лучшие помощники
- Megamozg 2190 б
- Matalya1 1800 б
- DevAdmin 1695 б
- arkasha_bortnikov 860 б
- Dwayne_Johnson 845 б
3 апреля 2023 12:01
495
Вычислить предел:lim( x стремится к 2) если x^3-8 разделить на x-2
1
ответ
Lim(x==>2) (x^3-8)/x-2.
Разлагаем на множители x^3-8 = (x-2) (x^2+2x+4)
получается в дроби (х-2) сокращаются.
остаётся lim (x==>2) (x^2+2x+4).
Подставляем 2, получаем предел равен 12.
Разлагаем на множители x^3-8 = (x-2) (x^2+2x+4)
получается в дроби (х-2) сокращаются.
остаётся lim (x==>2) (x^2+2x+4).
Подставляем 2, получаем предел равен 12.
0
·
Хороший ответ
5 апреля 2023 12:01
Остались вопросы?
Еще вопросы по категории Алгебра
Найдите наименьшее значение функции y= 7^ x^2+2x+3...
Упростите выражение (а-2/а+2-а+2/а-2):2а/4-а^2=...
5x+10/x-1/x^2-1/x^2-4 представить в виде дроби...
С1 Решить уравнение (1/2)sin2x+sin^2x-sinx=cosx И указать корни уравнения на отрезке [-2π;-π/2]...
Катер проходит 48 км против течения реки и 30 км по течению за 3 ч а 15 км по течению на 1 ч быстрее чем 36 против течения. найдите скорость катера и...
Все предметы