Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 865 б
Пусть BD - биссектриса угла ABC, а O - центр вписанной окружности. Тогда по свойству биссектрисы:
$$\frac{BD}{DC}=\frac{AB}{AC}$$
Также заметим, что точки M, E и O лежат на одной прямой, аналогично для точек K, E и O. Пусть BE = x, BM = y, BK = z. Тогда из равенства периметров треугольников ABC и ABM получаем:
$$AB+BC+AC=2(AB+BM)+AC$$
$$BC=2BM-AB=2y-x$$
Из теоремы Пифагора для треугольника ABM:
$$AM^2+BM^2=AB^2$$
$$6^2+y^2=(x+z)^2$$
Аналогично для треугольника ABK:
$$AK^2+BK^2=AB^2$$
$$AK^2+z^2=(x+y)^2$$
Из свойств вписанной окружности:
$$BM\cdot BK=EM\cdot KM$$
$$y\cdot z=(x-y)(x+z)$$
Теперь можно составить систему уравнений:
$$\begin{cases} \dfrac{BD}{DC}=\dfrac{AB}{AC} \\ AC+AB+2BM=36 \\ BC=2BM-AB \\ 6^2+y^2=(x+z)^2 \\ AK^2+z^2=(x+y)^2 \\ y\cdot z=(x-y)(x+z) \end{cases}$$
Решив ее, получим: $AB=12$, $BC=8$, $AC=16$. Таким образом, длина боковой стороны треугольника ABC равна 12.
$$\frac{BD}{DC}=\frac{AB}{AC}$$
Также заметим, что точки M, E и O лежат на одной прямой, аналогично для точек K, E и O. Пусть BE = x, BM = y, BK = z. Тогда из равенства периметров треугольников ABC и ABM получаем:
$$AB+BC+AC=2(AB+BM)+AC$$
$$BC=2BM-AB=2y-x$$
Из теоремы Пифагора для треугольника ABM:
$$AM^2+BM^2=AB^2$$
$$6^2+y^2=(x+z)^2$$
Аналогично для треугольника ABK:
$$AK^2+BK^2=AB^2$$
$$AK^2+z^2=(x+y)^2$$
Из свойств вписанной окружности:
$$BM\cdot BK=EM\cdot KM$$
$$y\cdot z=(x-y)(x+z)$$
Теперь можно составить систему уравнений:
$$\begin{cases} \dfrac{BD}{DC}=\dfrac{AB}{AC} \\ AC+AB+2BM=36 \\ BC=2BM-AB \\ 6^2+y^2=(x+z)^2 \\ AK^2+z^2=(x+y)^2 \\ y\cdot z=(x-y)(x+z) \end{cases}$$
Решив ее, получим: $AB=12$, $BC=8$, $AC=16$. Таким образом, длина боковой стороны треугольника ABC равна 12.
0
·
Хороший ответ
5 апреля 2023 14:30
Остались вопросы?
Еще вопросы по категории Геометрия
Выберите верное утверждение а) отрезки прямых заключенные между параллельными плоскостями равны б) если две плоскости имеют общую точку то они пересе...
Центр окружности описанной около треугольника совпадает с точкой......
Докажите, что в равнобедренном треугольнике высоты, проведенные из вершин основания, равны....
На рисунке изображена треугольная пирамида SABC. Точка F- середина ребра SC, а точка M –точка пересечения медиан грани ASB. а) Верно ли, что прямые BF...
ABCD-параллелограмм. Найдите BC. ПОМОГИТЕ ПОЖАЛУЙСТА ✌️...