Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 860 б
Для решения задачи нам необходимо знать координаты точек в кубе. Пусть сторона куба равна a, тогда координаты точек будут:
A(0, 0, 0), B(a, 0, 0), C(a, a, 0), D(0, a, 0)
A1(0, 0, a), B1(a, 0, a), C1(a, a, a), D1(0, a, a)
1. Угол между AB и A1B1:
Вектор AB = (a, 0, 0), вектор A1B1 = (-a, 0, a)
Скалярное произведение векторов AB и A1B1 равно:
(a, 0, 0) * (-a, 0, a) = -a^2
Длины векторов AB и A1B1 равны:
|AB| = a, |A1B1| = a*sqrt(2)
Тогда косинус угла между векторами AB и A1B1 равен:
cos(α) = (a, 0, 0) * (-a, 0, a) / (a * a * sqrt(2)) = -1 / sqrt(2)
Угол α между векторами AB и A1B1 равен:
α = arccos(-1 / sqrt(2)) ≈ 135°
2. Угол между AB и A1B:
Вектор AB = (a, 0, 0), вектор A1B = (0, 0, a)
Скалярное произведение векторов AB и A1B равно:
(a, 0, 0) * (0, 0, a) = 0
Длины векторов AB и A1B равны:
|AB| = a, |A1B| = a
Тогда косинус угла между векторами AB и A1B равен:
cos(β) = (a, 0, 0) * (0, 0, a) / (a * a) = 0
Угол β между векторами AB и A1B равен:
β = arccos(0) = 90°
3. Угол между AB и C1C:
Вектор AB = (a, 0, 0), вектор C1C = (0, a, 0)
Скалярное произведение векторов AB и C1C равно:
(a, 0, 0) * (0, a, 0) = 0
Длины векторов AB и C1C равны:
|AB| = a, |C1C| = a
Тогда косинус угла между векторами AB и C1C равен:
cos(γ) = (a, 0, 0) * (0, a, 0) / (a * a) = 0
Угол γ между векторами AB и C1C равен:
γ = arccos(0) = 90°
4. Угол между AB и B1C1D1:
Вектор AB = (a, 0, 0), вектор B1C1D1 = (0, -a, a)
Скалярное произведение векторов AB и B1C1D1 равно:
(a, 0, 0) * (0, -a, a) = 0
Длины векторов AB и B1C1D1 равны:
|AB| = a, |B1C1D1| = a*sqrt(2)
Тогда косинус угла между векторами AB и B1C1D1 равен:
cos(δ) = (a, 0, 0) * (0, -a, a) / (a * a * sqrt(2)) = -1 / sqrt(2)
Угол δ между векторами AB и B1C1D1 равен:
δ = arccos(-1 / sqrt(2)) ≈ 135°
5. Угол между ABC и B1CB:
Вектор ABC = (a, a, 0), вектор B1CB = (0, a, -a)
Скалярное произведение векторов ABC и B1CB равно:
(a, a, 0) * (0, a, -a) = -a^2
Длины векторов ABC и B1CB равны:
|ABC| = a*sqrt(2), |B1CB| = a*sqrt(2)
Тогда косинус угла между векторами ABC и B1CB равен:
cos(ε) = (a, a, 0) * (0, a, -a) / (a * a * 2) = -1 / 2
Угол ε между векторами ABC и B1CB равен:
ε = arccos(-1 / 2) ≈ 120°
6. Угол между ABC и B1CB1:
Вектор ABC = (a, a, 0), вектор B1CB1 = (-a, a, a)
Скалярное произведение векторов ABC и B1CB1 равно:
(a, a, 0) * (-a, a, a) = a^2
Длины векторов ABC и B1CB1 равны:
|ABC| = a*sqrt(2), |B1CB1| = a*sqrt(3)
Тогда косинус угла между векторами ABC и B1CB1 равен:
cos(ζ) = (a, a, 0) * (-a, a, a) / (a * a * sqrt(6)) = 1 / sqrt(6)
Угол ζ между векторами ABC и B1CB1 равен:
ζ = arccos(1 / sqrt(6)) ≈ 35.26°
A(0, 0, 0), B(a, 0, 0), C(a, a, 0), D(0, a, 0)
A1(0, 0, a), B1(a, 0, a), C1(a, a, a), D1(0, a, a)
1. Угол между AB и A1B1:
Вектор AB = (a, 0, 0), вектор A1B1 = (-a, 0, a)
Скалярное произведение векторов AB и A1B1 равно:
(a, 0, 0) * (-a, 0, a) = -a^2
Длины векторов AB и A1B1 равны:
|AB| = a, |A1B1| = a*sqrt(2)
Тогда косинус угла между векторами AB и A1B1 равен:
cos(α) = (a, 0, 0) * (-a, 0, a) / (a * a * sqrt(2)) = -1 / sqrt(2)
Угол α между векторами AB и A1B1 равен:
α = arccos(-1 / sqrt(2)) ≈ 135°
2. Угол между AB и A1B:
Вектор AB = (a, 0, 0), вектор A1B = (0, 0, a)
Скалярное произведение векторов AB и A1B равно:
(a, 0, 0) * (0, 0, a) = 0
Длины векторов AB и A1B равны:
|AB| = a, |A1B| = a
Тогда косинус угла между векторами AB и A1B равен:
cos(β) = (a, 0, 0) * (0, 0, a) / (a * a) = 0
Угол β между векторами AB и A1B равен:
β = arccos(0) = 90°
3. Угол между AB и C1C:
Вектор AB = (a, 0, 0), вектор C1C = (0, a, 0)
Скалярное произведение векторов AB и C1C равно:
(a, 0, 0) * (0, a, 0) = 0
Длины векторов AB и C1C равны:
|AB| = a, |C1C| = a
Тогда косинус угла между векторами AB и C1C равен:
cos(γ) = (a, 0, 0) * (0, a, 0) / (a * a) = 0
Угол γ между векторами AB и C1C равен:
γ = arccos(0) = 90°
4. Угол между AB и B1C1D1:
Вектор AB = (a, 0, 0), вектор B1C1D1 = (0, -a, a)
Скалярное произведение векторов AB и B1C1D1 равно:
(a, 0, 0) * (0, -a, a) = 0
Длины векторов AB и B1C1D1 равны:
|AB| = a, |B1C1D1| = a*sqrt(2)
Тогда косинус угла между векторами AB и B1C1D1 равен:
cos(δ) = (a, 0, 0) * (0, -a, a) / (a * a * sqrt(2)) = -1 / sqrt(2)
Угол δ между векторами AB и B1C1D1 равен:
δ = arccos(-1 / sqrt(2)) ≈ 135°
5. Угол между ABC и B1CB:
Вектор ABC = (a, a, 0), вектор B1CB = (0, a, -a)
Скалярное произведение векторов ABC и B1CB равно:
(a, a, 0) * (0, a, -a) = -a^2
Длины векторов ABC и B1CB равны:
|ABC| = a*sqrt(2), |B1CB| = a*sqrt(2)
Тогда косинус угла между векторами ABC и B1CB равен:
cos(ε) = (a, a, 0) * (0, a, -a) / (a * a * 2) = -1 / 2
Угол ε между векторами ABC и B1CB равен:
ε = arccos(-1 / 2) ≈ 120°
6. Угол между ABC и B1CB1:
Вектор ABC = (a, a, 0), вектор B1CB1 = (-a, a, a)
Скалярное произведение векторов ABC и B1CB1 равно:
(a, a, 0) * (-a, a, a) = a^2
Длины векторов ABC и B1CB1 равны:
|ABC| = a*sqrt(2), |B1CB1| = a*sqrt(3)
Тогда косинус угла между векторами ABC и B1CB1 равен:
cos(ζ) = (a, a, 0) * (-a, a, a) / (a * a * sqrt(6)) = 1 / sqrt(6)
Угол ζ между векторами ABC и B1CB1 равен:
ζ = arccos(1 / sqrt(6)) ≈ 35.26°
0
·
Хороший ответ
6 апреля 2023 07:47
Остались вопросы?
Еще вопросы по категории Геометрия
Основание трапеции - 44 и 16 см, а боковые стороны - 17 и 25 см. Найти высоту трапеции....
Что такое перпендикулярно?...
Доказать равенство треугольников COD и AOD(дам 30 баллов)...
Рассмотри все возможные случаи и определи, на сколько частей плоскость делят в ней расположенные прямые. (В качестве ответа введи число возможных част...
В треугольнике ABC внешний угол при вершине C равен 150°, AB=BC=14. Найдите длину медианы BK...
Все предметы