Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
10 апреля 2023 11:37
578
Помогите с задачей по физике Мощность излучения электрической лампы составляет 25 Вт, площадь излучающей поверхности нити накала равна 5 см^2. Определить длину волны, на которую приходится максимум испускательной способности лампы.
1
ответ
Для решения этой задачи нужно воспользоваться законом Вина.
Согласно этому закону, максимум испускательной способности приходится на длину волны, соответствующую температуре тела. Формула закона Вина выглядит следующим образом:
λ_max*T = b,
где λ_max - длина волны, на которую приходится максимум испускательной способности, T - температура тела в Кельвинах, b - постоянная Вина, равная 2,898*10^-3 м∙К.
Для нахождения температуры нити накала воспользуемся формулой для мощности излучения:
P = σ*S*T^4,
где P - мощность излучения, σ - постоянная Стефана-Больцмана, равная 5,67*10^-8 Вт/(м^2∙К^4), S - площадь излучающей поверхности, T - температура нити накала в Кельвинах.
Из этой формулы можно выразить температуру:
T = (P/(σ*S))^(1/4).
Подставим известные значения и найдем температуру:
T = (25 Вт/(5,67*10^-8 Вт/(м^2∙К^4) * 0,0005 м^2))^(1/4) ≈ 1900 К.
Теперь можно найти длину волны, на которую приходится максимум испускательной способности:
λ_max = b/T = 2,898*10^-3 м/К * (1/1900 К) ≈ 1,52*10^-6 м = 1520 нм.
Ответ: длина волны, на которую приходится максимум испускательной способности лампы, равна 1520 нм.
Согласно этому закону, максимум испускательной способности приходится на длину волны, соответствующую температуре тела. Формула закона Вина выглядит следующим образом:
λ_max*T = b,
где λ_max - длина волны, на которую приходится максимум испускательной способности, T - температура тела в Кельвинах, b - постоянная Вина, равная 2,898*10^-3 м∙К.
Для нахождения температуры нити накала воспользуемся формулой для мощности излучения:
P = σ*S*T^4,
где P - мощность излучения, σ - постоянная Стефана-Больцмана, равная 5,67*10^-8 Вт/(м^2∙К^4), S - площадь излучающей поверхности, T - температура нити накала в Кельвинах.
Из этой формулы можно выразить температуру:
T = (P/(σ*S))^(1/4).
Подставим известные значения и найдем температуру:
T = (25 Вт/(5,67*10^-8 Вт/(м^2∙К^4) * 0,0005 м^2))^(1/4) ≈ 1900 К.
Теперь можно найти длину волны, на которую приходится максимум испускательной способности:
λ_max = b/T = 2,898*10^-3 м/К * (1/1900 К) ≈ 1,52*10^-6 м = 1520 нм.
Ответ: длина волны, на которую приходится максимум испускательной способности лампы, равна 1520 нм.
0
·
Хороший ответ
10 апреля 2023 11:39
Остались вопросы?
Еще вопросы по категории Физика
Основная задача механики (определение, формула в общем виде)...
На какой угол отклонится луч от первоначального направления, если он упал под углом 45 на поверхность стекла(Срочно)...
В однородном электростатическом поле перемещается положительный заряд из точки 1 в точку 2 по траекториям I, II, III, показаным на рисунке. Работа сил...
Протон, движущийся соскоростью 2*10^4 м/с, столкнулся с неподвижным ядром атома гелия. Рассчитайте скорость ядра атома гелия после удара, если скорост...
Найдите силу гравитационного притяжения,действующую между землей и луной, если масса земли равна 6*10 в 24 степени кг, а масса луны-7,2*10 в 22 степен...