Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 865 б
1) Координаты векторов:
$\overrightarrow{AB} = \begin{pmatrix}1-3 \\ -1-(-2)\end{pmatrix} = \begin{pmatrix}-2 \\ -1\end{pmatrix}$
$\overrightarrow{AC} = \begin{pmatrix}-1-3 \\ 1-(-2)\end{pmatrix} = \begin{pmatrix}-4 \\ 3\end{pmatrix}$
$\overrightarrow{BC} = \begin{pmatrix}-1-1 \\ 1-(-1)\end{pmatrix} = \begin{pmatrix}-2 \\ 2\end{pmatrix}$
2) Модули векторов:
$|\overrightarrow{AB}| = \sqrt{(-2)^2 + (-1)^2} = \sqrt{5}$
$|\overrightarrow{AC}| = \sqrt{(-4)^2 + 3^2} = 5$
$|\overrightarrow{BC}| = \sqrt{(-2)^2 + 2^2} = 2\sqrt{2}$
3) Координаты вектора $\overrightarrow{BD}$, где $D$ - середина отрезка $AC$:
$\overrightarrow{BD} = \frac{1}{2}(\overrightarrow{AB} + \overrightarrow{BC}) = \frac{1}{2}\begin{pmatrix}-4 \\ 1\end{pmatrix} = \begin{pmatrix}-2 \\ \frac{1}{2}\end{pmatrix}$
4) Скалярное произведение векторов:
$\overrightarrow{AB} \cdot \overrightarrow{AC} = (-2) \cdot (-4) + (-1) \cdot 3 = 11$
$\overrightarrow{AB} \cdot \overrightarrow{BC} = (-2) \cdot (-2) + (-1) \cdot 2 = 6$
$\overrightarrow{AC} \cdot \overrightarrow{BC} = (-4) \cdot (-2) + 3 \cdot 2 = 14$
5) Косинус угла между векторами:
$\cos \angle BAC = \frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{|\overrightarrow{AB}| \cdot |\overrightarrow{AC}|} = \frac{11}{\sqrt{5} \cdot 5} = \frac{11}{5\sqrt{5}}$
$\cos \angle ABC = \frac{\overrightarrow{AB} \cdot \overrightarrow{BC}}{|\overrightarrow{AB}| \cdot |\overrightarrow{BC}|} = \frac{6}{\sqrt{5} \cdot 2\sqrt{2}} = \frac{3\sqrt{2}}{5}$
$\cos \angle ACD = \frac{\overrightarrow{AC} \cdot \overrightarrow{BC}}{|\overrightarrow{AC}| \cdot |\overrightarrow{BC}|} = \frac{14}{5 \cdot 2\sqrt{2}} = \frac{7\sqrt{2}}{5}$
$\overrightarrow{AB} = \begin{pmatrix}1-3 \\ -1-(-2)\end{pmatrix} = \begin{pmatrix}-2 \\ -1\end{pmatrix}$
$\overrightarrow{AC} = \begin{pmatrix}-1-3 \\ 1-(-2)\end{pmatrix} = \begin{pmatrix}-4 \\ 3\end{pmatrix}$
$\overrightarrow{BC} = \begin{pmatrix}-1-1 \\ 1-(-1)\end{pmatrix} = \begin{pmatrix}-2 \\ 2\end{pmatrix}$
2) Модули векторов:
$|\overrightarrow{AB}| = \sqrt{(-2)^2 + (-1)^2} = \sqrt{5}$
$|\overrightarrow{AC}| = \sqrt{(-4)^2 + 3^2} = 5$
$|\overrightarrow{BC}| = \sqrt{(-2)^2 + 2^2} = 2\sqrt{2}$
3) Координаты вектора $\overrightarrow{BD}$, где $D$ - середина отрезка $AC$:
$\overrightarrow{BD} = \frac{1}{2}(\overrightarrow{AB} + \overrightarrow{BC}) = \frac{1}{2}\begin{pmatrix}-4 \\ 1\end{pmatrix} = \begin{pmatrix}-2 \\ \frac{1}{2}\end{pmatrix}$
4) Скалярное произведение векторов:
$\overrightarrow{AB} \cdot \overrightarrow{AC} = (-2) \cdot (-4) + (-1) \cdot 3 = 11$
$\overrightarrow{AB} \cdot \overrightarrow{BC} = (-2) \cdot (-2) + (-1) \cdot 2 = 6$
$\overrightarrow{AC} \cdot \overrightarrow{BC} = (-4) \cdot (-2) + 3 \cdot 2 = 14$
5) Косинус угла между векторами:
$\cos \angle BAC = \frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{|\overrightarrow{AB}| \cdot |\overrightarrow{AC}|} = \frac{11}{\sqrt{5} \cdot 5} = \frac{11}{5\sqrt{5}}$
$\cos \angle ABC = \frac{\overrightarrow{AB} \cdot \overrightarrow{BC}}{|\overrightarrow{AB}| \cdot |\overrightarrow{BC}|} = \frac{6}{\sqrt{5} \cdot 2\sqrt{2}} = \frac{3\sqrt{2}}{5}$
$\cos \angle ACD = \frac{\overrightarrow{AC} \cdot \overrightarrow{BC}}{|\overrightarrow{AC}| \cdot |\overrightarrow{BC}|} = \frac{14}{5 \cdot 2\sqrt{2}} = \frac{7\sqrt{2}}{5}$
0
·
Хороший ответ
11 апреля 2023 11:41
Остались вопросы?
Еще вопросы по категории Геометрия
Какие из следующих утверждений верны? 1. Существуют три прямые,которые проходят через одну точку. 2.Все высоты равностороннего треугольника равны. 3.Е...
Дан треугольник АВС через точку О на стороне АВ и точку Р на стороне СВ проведена прямая,причем ОР паралельно АС.Докажите что треугольники АВС и ОВР п...
в прямоугольном параллелепипеде ABCDA1B1C1D1 ,в котором AB=5,AD=4,AA1=3 проведите сечение через вершины ABC1D1.Найдите его площадь...
Треугольник АВС, угол а=50 градусов, угол В = 60 , доказать АВ>АС...
Срочно 30 баллов!!! Угол C треугольника ABC- прямой. AD- перпендикуляр к плоскости треугольника ABC. Докажите, что треугольник BCD- прямоугольный....