Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
12 апреля 2023 03:12
399
Основанием прямого параллелепипеда ABCDA₁B₁C₁D₁ является параллелограмм ABCD, стороны которого равны 10 и 15, острый угол равен 45°. Высота параллелепипеда равна меньшей высоте параллелограмма. Найдите: а) меньшую высоту параллелограмма; б) угол между плоскостью АВС₁ и плоскостью основания; в) площадь боковой поверхности параллелепипеда; г) площадь поверхности параллелепипеда.
![]()
1
ответ
А) Обозначим меньшую высоту параллелограмма как $h$. Так как острый угол параллелограмма равен 45°, то высота $h$ будет равна стороне, противолежащей этому углу, то есть $h=10$.
б) Угол между плоскостью АВС₁ и плоскостью основания параллелепипеда равен углу между прямой, перпендикулярной основанию и линией пересечения плоскостей. Этот угол равен углу между вектором, направленным вдоль линии пересечения плоскостей, и вектором, перпендикулярным основанию. Вектор, направленный вдоль линии пересечения плоскостей, равен векторному произведению векторов $\overrightarrow{AB}$ и $\overrightarrow{AC_1}$, а вектор, перпендикулярный основанию, равен вектору $\overrightarrow{AB_1}$.
Имеем: $\overrightarrow{AB}=\begin{pmatrix} 15 \\ 0 \\ 0 \end{pmatrix}$, $\overrightarrow{AC_1}=\begin{pmatrix} 5 \\ 5 \\ -h \end{pmatrix}$, $\overrightarrow{AB_1}=\begin{pmatrix} 15 \\ 0 \\ -h \end{pmatrix}$. Тогда вектор, направленный вдоль линии пересечения плоскостей, равен: $$\overrightarrow{n}=\overrightarrow{AB}\times\overrightarrow{AC_1}=\begin{pmatrix} 0 \\ -15h \\ 75 \end{pmatrix}.$$ Угол между векторами $\overrightarrow{n}$ и $\overrightarrow{AB_1}$ равен: $$\cos\theta=\frac{\overrightarrow{n}\cdot\overrightarrow{AB_1}}{|\overrightarrow{n}|\cdot|\overrightarrow{AB_1}|}=\frac{15h}{\sqrt{15^2h^2+75^2}\cdot 15}=\frac{h}{\sqrt{h^2+5^2}}.$$ Таким образом, угол между плоскостью АВС₁ и плоскостью основания равен: $$\theta=\arccos\frac{h}{\sqrt{h^2+5^2}}.$$ Подставляя $h=10$, получаем: $$\theta=\arccos\frac{10}{\sqrt{10^2+5^2}}\approx 63.4^\circ.$$
в) Боковая поверхность параллелепипеда состоит из четырех прямоугольников, каждый из которых имеет площадь равную произведению высоты и длины стороны основания. Площадь боковой поверхности равна: $$4\cdot 10\cdot 15+4\cdot 10\cdot h+4\cdot 15\cdot h=800+80h.$$ Подставляя $h=10$, получаем: $$S_{\text{бок}}=1600.$$
г) Поверхность параллелепипеда состоит из двух оснований и четырех боковых поверхностей. Площадь поверхности равна: $$2\cdot 10\cdot 15+800=400+800+800=2000.$$ Ответ: а) $h=10$; б) $\theta\approx 63.4^\circ$; в) $S_{\text{бок}}=1600$; г) $S_{\text{пов}}=2000$.
б) Угол между плоскостью АВС₁ и плоскостью основания параллелепипеда равен углу между прямой, перпендикулярной основанию и линией пересечения плоскостей. Этот угол равен углу между вектором, направленным вдоль линии пересечения плоскостей, и вектором, перпендикулярным основанию. Вектор, направленный вдоль линии пересечения плоскостей, равен векторному произведению векторов $\overrightarrow{AB}$ и $\overrightarrow{AC_1}$, а вектор, перпендикулярный основанию, равен вектору $\overrightarrow{AB_1}$.
Имеем: $\overrightarrow{AB}=\begin{pmatrix} 15 \\ 0 \\ 0 \end{pmatrix}$, $\overrightarrow{AC_1}=\begin{pmatrix} 5 \\ 5 \\ -h \end{pmatrix}$, $\overrightarrow{AB_1}=\begin{pmatrix} 15 \\ 0 \\ -h \end{pmatrix}$. Тогда вектор, направленный вдоль линии пересечения плоскостей, равен: $$\overrightarrow{n}=\overrightarrow{AB}\times\overrightarrow{AC_1}=\begin{pmatrix} 0 \\ -15h \\ 75 \end{pmatrix}.$$ Угол между векторами $\overrightarrow{n}$ и $\overrightarrow{AB_1}$ равен: $$\cos\theta=\frac{\overrightarrow{n}\cdot\overrightarrow{AB_1}}{|\overrightarrow{n}|\cdot|\overrightarrow{AB_1}|}=\frac{15h}{\sqrt{15^2h^2+75^2}\cdot 15}=\frac{h}{\sqrt{h^2+5^2}}.$$ Таким образом, угол между плоскостью АВС₁ и плоскостью основания равен: $$\theta=\arccos\frac{h}{\sqrt{h^2+5^2}}.$$ Подставляя $h=10$, получаем: $$\theta=\arccos\frac{10}{\sqrt{10^2+5^2}}\approx 63.4^\circ.$$
в) Боковая поверхность параллелепипеда состоит из четырех прямоугольников, каждый из которых имеет площадь равную произведению высоты и длины стороны основания. Площадь боковой поверхности равна: $$4\cdot 10\cdot 15+4\cdot 10\cdot h+4\cdot 15\cdot h=800+80h.$$ Подставляя $h=10$, получаем: $$S_{\text{бок}}=1600.$$
г) Поверхность параллелепипеда состоит из двух оснований и четырех боковых поверхностей. Площадь поверхности равна: $$2\cdot 10\cdot 15+800=400+800+800=2000.$$ Ответ: а) $h=10$; б) $\theta\approx 63.4^\circ$; в) $S_{\text{бок}}=1600$; г) $S_{\text{пов}}=2000$.
0
·
Хороший ответ
12 апреля 2023 03:17
Остались вопросы?
Еще вопросы по категории Математика
площадь чем измеряется площадь Назови единицы измерения площади Какая единица измерения площади самая большая самая маленькая...
Около школы решили посадить 30 деревьев. После осенних посадок осталось посадить ещё 8 деревьев. Сколько деревьев посадили осенью?...
Составить 3 предложения из этих слов на английском system analyst - системный аналитик software - программное обеспечение $103 to update -...
Как решить и какой ответ правильный?...
А) Какую величину на Руси измеряли вёдрами? Б) Что измеряют галлонами? Баррелями? В каких странах использкются эти единицы измерения? В) На ёмкостях...