Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
Формула для нахождения первого члена арифметической прогрессии (а1) и разности (d) по двум известным членам (an) и (am) выглядит так:
$a_1 = \frac{2a_m - (n-1)d}{2}$
$d = \frac{a_n - a_m}{n-m}$
Подставляя известные значения, получаем:
$a_1 = \frac{2a_5 - (5-1)d}{2} = \frac{2\cdot23 - 4d}{2} = 23 - 2d$
$a_1 = \frac{2a_9 - (9-1)d}{2} = \frac{2\cdot43 - 8d}{2} = 43 - 4d$
Из этих двух уравнений можно найти значение d:
$23 - 2d = 43 - 4d$
$2d = 20$
$d = 10$
Подставляя найденное значение d в любое из двух уравнений, находим а1:
$a_1 = 23 - 2d = 23 - 2\cdot10 = 3$
Ответ: а1 = 3, d = 10.
$a_1 = \frac{2a_m - (n-1)d}{2}$
$d = \frac{a_n - a_m}{n-m}$
Подставляя известные значения, получаем:
$a_1 = \frac{2a_5 - (5-1)d}{2} = \frac{2\cdot23 - 4d}{2} = 23 - 2d$
$a_1 = \frac{2a_9 - (9-1)d}{2} = \frac{2\cdot43 - 8d}{2} = 43 - 4d$
Из этих двух уравнений можно найти значение d:
$23 - 2d = 43 - 4d$
$2d = 20$
$d = 10$
Подставляя найденное значение d в любое из двух уравнений, находим а1:
$a_1 = 23 - 2d = 23 - 2\cdot10 = 3$
Ответ: а1 = 3, d = 10.
0
·
Хороший ответ
12 апреля 2023 10:19
Остались вопросы?
Еще вопросы по категории Алгебра
Система! помогите пожалуйста! корень(x) + корень(y) = 26, корень(x) ^4 + корень(y) ^4 = 6...
Найдите корень уравнения cos пи(х-1)/3=1/2. В ответ запишите напишите наибольший отрицательный корень....
Что такое инцидентное ребро или вершина?...
Упростите выражение (а-2/а+2-а+2/а-2):2а/4-а^2=...
Алгоритм решения логарифмических неравенств...