Лучшие помощники
- Megamozg 2190 б
- Matalya1 1800 б
- DevAdmin 1695 б
- arkasha_bortnikov 860 б
- Dwayne_Johnson 845 б
Для решения данного уравнения необходимо сначала избавиться от корня. Для этого возведем обе части уравнения в квадрат:
$$(2\cos(4x))^2 = 3$$
$$4\cos^2(4x) = 3$$
$$\cos^2(4x) = \frac{3}{4}$$
Теперь найдем значения $\cos(4x)$:
$$\cos(4x) = \pm\frac{\sqrt{3}}{2}$$
Для нахождения решений уравнения необходимо решить два уравнения:
$$4x = \pm\frac{\pi}{6} + 2\pi k_1, \quad k_1 \in \mathbb{Z}$$
$$4x = \pm\frac{5\pi}{6} + 2\pi k_2, \quad k_2 \in \mathbb{Z}$$
Решая эти уравнения, получаем:
$$x = \frac{\pi}{24} + \frac{\pi k_1}{2}, \quad k_1 \in \mathbb{Z}$$
$$x = \frac{5\pi}{24} + \frac{\pi k_2}{2}, \quad k_2 \in \mathbb{Z}$$
Таким образом, общее решение уравнения имеет вид:
$$x = \frac{\pi}{24} + \frac{\pi k_1}{2}, \quad k_1 \in \mathbb{Z}$$
или
$$x = \frac{5\pi}{24} + \frac{\pi k_2}{2}, \quad k_2 \in \mathbb{Z}$$
$$(2\cos(4x))^2 = 3$$
$$4\cos^2(4x) = 3$$
$$\cos^2(4x) = \frac{3}{4}$$
Теперь найдем значения $\cos(4x)$:
$$\cos(4x) = \pm\frac{\sqrt{3}}{2}$$
Для нахождения решений уравнения необходимо решить два уравнения:
$$4x = \pm\frac{\pi}{6} + 2\pi k_1, \quad k_1 \in \mathbb{Z}$$
$$4x = \pm\frac{5\pi}{6} + 2\pi k_2, \quad k_2 \in \mathbb{Z}$$
Решая эти уравнения, получаем:
$$x = \frac{\pi}{24} + \frac{\pi k_1}{2}, \quad k_1 \in \mathbb{Z}$$
$$x = \frac{5\pi}{24} + \frac{\pi k_2}{2}, \quad k_2 \in \mathbb{Z}$$
Таким образом, общее решение уравнения имеет вид:
$$x = \frac{\pi}{24} + \frac{\pi k_1}{2}, \quad k_1 \in \mathbb{Z}$$
или
$$x = \frac{5\pi}{24} + \frac{\pi k_2}{2}, \quad k_2 \in \mathbb{Z}$$
0
·
Хороший ответ
14 апреля 2023 08:39
Остались вопросы?
Еще вопросы по категории Математика
Какие числа отмечены точками на координатной прямой? рис 3.3...
Нарисуйте рисунок по координатам дельфина 1) (-7; -2), (-3; 4), (-1; 4), (2; 7), (2; 4), (5; 4), (9; -5), (10; -9), (8; -8), (5; -10), (7; -5), (3; -2...
3. С помощью учебника заполни таблицу,...
9+(-7)=? сколько будет выполните сложение: а) -46+(-18); б) -8+(-12); в) -144+(-56)....
Сколько миллиметров в 1 дециметре?...
Все предметы