Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 865 б
Для начала, найдем длину стороны AB, используя теорему косинусов:
AB^2 = AC^2 + BC^2 - 2 * AC * BC * cos(C)
AB^2 = (2V39)^2 + 2^2 - 2 * 2V39 * 2 * cos(60°)
AB^2 = 156 + 4 - 4V39
AB^2 = 160 - 4V39
AB = V(160 - 4V39)
AB = 4V(10 - V39)
Далее, используем формулу для биссектрисы треугольника:
BD = 2 * AC * BC * cos(C/2) / (AC + BC)
где BD - биссектриса, проведенная из вершины С, а D - точка пересечения биссектрисы с стороной AB.
Подставляем известные значения:
BD = 2 * (2V39) * 2 * cos(30°) / ((2V39) + 2)
BD = 2V3
Таким образом, биссектриса СО треугольника АВС равна 2V3.
AB^2 = AC^2 + BC^2 - 2 * AC * BC * cos(C)
AB^2 = (2V39)^2 + 2^2 - 2 * 2V39 * 2 * cos(60°)
AB^2 = 156 + 4 - 4V39
AB^2 = 160 - 4V39
AB = V(160 - 4V39)
AB = 4V(10 - V39)
Далее, используем формулу для биссектрисы треугольника:
BD = 2 * AC * BC * cos(C/2) / (AC + BC)
где BD - биссектриса, проведенная из вершины С, а D - точка пересечения биссектрисы с стороной AB.
Подставляем известные значения:
BD = 2 * (2V39) * 2 * cos(30°) / ((2V39) + 2)
BD = 2V3
Таким образом, биссектриса СО треугольника АВС равна 2V3.
0
·
Хороший ответ
20 апреля 2023 18:18
Остались вопросы?
Еще вопросы по категории Геометрия
Вариант 1. 1) Через сторону AC треугольника ABC проведена плоскость альфа, B не принадлежит плоскости альфа. Докажите, что прямая, проходящая через се...
Высота BH ромба ABCD делит его сторону AD на отрезки AH=44 и HD=11. Найдите площадь ромба....
Найдите объём правильной шестиугольной призмы...
1.Человек ростом 1,8 м стоит на расстоянии 10 шагов от столба, на котором висит фонарь.Тень человека равна шести шагам. На какой высоте (в метрах) рас...
Доказать что AB= BC...