Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
Для начала, найдем длину стороны AB, используя теорему косинусов:
AB^2 = AC^2 + BC^2 - 2 * AC * BC * cos(C)
AB^2 = (2V39)^2 + 2^2 - 2 * 2V39 * 2 * cos(60°)
AB^2 = 156 + 4 - 4V39
AB^2 = 160 - 4V39
AB = V(160 - 4V39)
AB = 4V(10 - V39)
Далее, используем формулу для биссектрисы треугольника:
BD = 2 * AC * BC * cos(C/2) / (AC + BC)
где BD - биссектриса, проведенная из вершины С, а D - точка пересечения биссектрисы с стороной AB.
Подставляем известные значения:
BD = 2 * (2V39) * 2 * cos(30°) / ((2V39) + 2)
BD = 2V3
Таким образом, биссектриса СО треугольника АВС равна 2V3.
AB^2 = AC^2 + BC^2 - 2 * AC * BC * cos(C)
AB^2 = (2V39)^2 + 2^2 - 2 * 2V39 * 2 * cos(60°)
AB^2 = 156 + 4 - 4V39
AB^2 = 160 - 4V39
AB = V(160 - 4V39)
AB = 4V(10 - V39)
Далее, используем формулу для биссектрисы треугольника:
BD = 2 * AC * BC * cos(C/2) / (AC + BC)
где BD - биссектриса, проведенная из вершины С, а D - точка пересечения биссектрисы с стороной AB.
Подставляем известные значения:
BD = 2 * (2V39) * 2 * cos(30°) / ((2V39) + 2)
BD = 2V3
Таким образом, биссектриса СО треугольника АВС равна 2V3.
0
·
Хороший ответ
20 апреля 2023 18:18
Остались вопросы?
Еще вопросы по категории Геометрия
BK и AR — медианы. BR=8 м AK=9 м RK=5 м Найти: P(ABC) Каковы длины сторон? AC= м BC= м AB= м P(ABC)= м...
ABCD-ромб , биссектриса угла BAC пересекает строну BC и диагонали BD в точках соответственно M и N угол AMC=120 градусов.найти угол ANB Пожалуйста реш...
Даны координаты вершин четырехугольника ABCD: A(-6;1), B(0;5), C(6;-4),D(0,-8). Докажите, что это прямоугольник и найдите координаты точки пересечения...
Биссектриса CM треугольника ABC делит сторону AB на отрезки AM=10 и MB=18 . Касательная к описанной окружности треугольника ABC , проходящая через точ...
В прямоугольном треугольнике гипотенуза равна 70, а один из острых углов равен 45∘ . Найдите площадь треугольника....