Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
Для начала, найдем длину стороны AB, используя теорему косинусов:
AB^2 = AC^2 + BC^2 - 2 * AC * BC * cos(C)
AB^2 = (2V39)^2 + 2^2 - 2 * 2V39 * 2 * cos(60°)
AB^2 = 156 + 4 - 4V39
AB^2 = 160 - 4V39
AB = V(160 - 4V39)
AB = 4V(10 - V39)
Далее, используем формулу для биссектрисы треугольника:
BD = 2 * AC * BC * cos(C/2) / (AC + BC)
где BD - биссектриса, проведенная из вершины С, а D - точка пересечения биссектрисы с стороной AB.
Подставляем известные значения:
BD = 2 * (2V39) * 2 * cos(30°) / ((2V39) + 2)
BD = 2V3
Таким образом, биссектриса СО треугольника АВС равна 2V3.
AB^2 = AC^2 + BC^2 - 2 * AC * BC * cos(C)
AB^2 = (2V39)^2 + 2^2 - 2 * 2V39 * 2 * cos(60°)
AB^2 = 156 + 4 - 4V39
AB^2 = 160 - 4V39
AB = V(160 - 4V39)
AB = 4V(10 - V39)
Далее, используем формулу для биссектрисы треугольника:
BD = 2 * AC * BC * cos(C/2) / (AC + BC)
где BD - биссектриса, проведенная из вершины С, а D - точка пересечения биссектрисы с стороной AB.
Подставляем известные значения:
BD = 2 * (2V39) * 2 * cos(30°) / ((2V39) + 2)
BD = 2V3
Таким образом, биссектриса СО треугольника АВС равна 2V3.
0
·
Хороший ответ
20 апреля 2023 18:18
Остались вопросы?
Еще вопросы по категории Геометрия
куб и прямоугольный параллелепипед имеют одинаковую сумму длин всех ребер, равную 72 см. Длина параллелепипеда в 3 раза больше высоты, а ширина в 2 ра...
4. Осевое сечение усеченного конуса - равнобедренная трапеция, острый угол которой равен 60°, диагональ - 25 см и средняя линия - 24 см. Найдите площа...
P = 2πR что это за формула...
В треугольнике ABC, AB=BC=61, АС =22 найдите длину медианы ВМ...
Найдите площадь прямоугольной трапеции с основанием 10 см и 18 см,если ее большая боковая сторона образует с большим основанием угол 45градусов...