Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
27 апреля 2023 08:04
443
Найдите площадь боковой поверхности правильной пирамиды, в основании которой лежит трегольник со стороной 7
, если апофема пирамиды равна 4
,
9
.
1
ответ
Пусть высота пирамиды равна $h$, а боковое ребро равно $a$. Тогда по теореме Пифагора в треугольнике, образованном апофемой, половиной бокового ребра и высотой, имеем:
$$
\left(\frac{a}{2}\right)^2 + h^2 = 4.9^2
$$
Так как основание пирамиды - равносторонний треугольник, то его площадь равна:
$$
S_{\text{осн}} = \frac{7^2 \sqrt{3}}{4} = \frac{49\sqrt{3}}{4}
$$
Таким образом, площадь боковой поверхности пирамиды равна сумме площадей боковых треугольников. Каждый такой треугольник равнобедренный, поэтому его площадь можно вычислить по формуле $S_{\text{бок}} = \frac{1}{2} a \cdot p$, где $p$ - периметр основания. Таким образом, площадь боковой поверхности будет равна:
$$
S_{\text{бок}} = 3 \cdot \frac{1}{2} a \cdot \sqrt{a^2 - \left(\frac{7}{2}\right)^2} = \frac{3}{4} a \sqrt{4a^2 - 49}
$$
Осталось найти значение $a$. Для этого воспользуемся теоремой Пифагора в треугольнике, образованном боковым ребром, половиной стороны основания и апофемой:
$$
\left(\frac{a}{2}\right)^2 + \left(\frac{7}{2}\right)^2 = 4.9^2
$$
Решая это уравнение относительно $a$, получаем:
$$
a = \sqrt{\frac{4.9^2 - \left(\frac{7}{2}\right)^2}{2}} \approx 4.321
$$
Теперь можно вычислить площадь боковой поверхности:
$$
S_{\text{бок}} \approx 35.375
$$
Ответ: $S_{\text{бок}} \approx 35.375$. Единицы измерения не указаны, поэтому ответ дан в произвольных единицах площади.
$$
\left(\frac{a}{2}\right)^2 + h^2 = 4.9^2
$$
Так как основание пирамиды - равносторонний треугольник, то его площадь равна:
$$
S_{\text{осн}} = \frac{7^2 \sqrt{3}}{4} = \frac{49\sqrt{3}}{4}
$$
Таким образом, площадь боковой поверхности пирамиды равна сумме площадей боковых треугольников. Каждый такой треугольник равнобедренный, поэтому его площадь можно вычислить по формуле $S_{\text{бок}} = \frac{1}{2} a \cdot p$, где $p$ - периметр основания. Таким образом, площадь боковой поверхности будет равна:
$$
S_{\text{бок}} = 3 \cdot \frac{1}{2} a \cdot \sqrt{a^2 - \left(\frac{7}{2}\right)^2} = \frac{3}{4} a \sqrt{4a^2 - 49}
$$
Осталось найти значение $a$. Для этого воспользуемся теоремой Пифагора в треугольнике, образованном боковым ребром, половиной стороны основания и апофемой:
$$
\left(\frac{a}{2}\right)^2 + \left(\frac{7}{2}\right)^2 = 4.9^2
$$
Решая это уравнение относительно $a$, получаем:
$$
a = \sqrt{\frac{4.9^2 - \left(\frac{7}{2}\right)^2}{2}} \approx 4.321
$$
Теперь можно вычислить площадь боковой поверхности:
$$
S_{\text{бок}} \approx 35.375
$$
Ответ: $S_{\text{бок}} \approx 35.375$. Единицы измерения не указаны, поэтому ответ дан в произвольных единицах площади.
0
·
Хороший ответ
27 апреля 2023 08:06
Остались вопросы?
Еще вопросы по категории Математика
Для чего используется 1 2 бутандиол?...
Какое число является медианой последовательности "11 5 11 3 7 11 24"?...
В классе 24 учащихся, из них 3\8 (это дробь) составляют мальчики, сколько мальчиков учатся в классе?...
Помогите решить пример по математике (6 1/4 -4 1/8)*4+3 1/3:2 1/2...
Какое число стоит после числа 3 в последовательности "10 х 3 2 5 0"?...