Лучшие помощники
- Megamozg 2190 б
- Matalya1 1800 б
- DevAdmin 1690 б
- arkasha_bortnikov 860 б
- Dwayne_Johnson 845 б
Поскольку треугольник АВС прямоугольный и равнобедренный, то его катеты равны и равны 5 см каждый. Тогда отрезок СМ является высотой треугольника АСМ, опущенной на гипотенузу.
По теореме Пифагора найдем длину гипотенузы АС:
$AC = \sqrt{AB^2 + BC^2} = \sqrt{5^2 + 5^2} = \sqrt{50} = 5\sqrt{2}$ см.
Тогда площадь треугольника АСМ равна:
$S_{\triangle ACM} = \frac{1}{2} \cdot AC \cdot CM = \frac{1}{2} \cdot 5\sqrt{2} \cdot CM$
Из условия задачи известно, что расстояние от точки М до прямой АВ равно 6 см, то есть точка М находится на расстоянии 6 см от основания треугольника.
Обозначим основание треугольника АС как х. Тогда основание треугольника СМ равно (х - 6).
Используя формулу для площади треугольника через основание и высоту, получаем:
$S_{\triangle ACM} = \frac{1}{2} \cdot (х - 6) \cdot CM$
Таким образом, мы получили два выражения для площади треугольника АСМ. Приравняв их, получим уравнение:
$\frac{1}{2} \cdot 5\sqrt{2} \cdot CM = \frac{1}{2} \cdot (х - 6) \cdot CM$
Сокращая на $\frac{1}{2} \cdot CM$, получим:
$5\sqrt{2} = х - 6$
Отсюда находим основание треугольника АС:
$х = 5\sqrt{2} + 6$
Теперь можем найти длину отрезка СМ, используя любое из двух выражений для площади треугольника АСМ:
$S_{\triangle ACM} = \frac{1}{2} \cdot 5\sqrt{2} \cdot CM = \frac{1}{2} \cdot (5\sqrt{2} + 6 - 6) \cdot CM = \frac{1}{2} \cdot 5\sqrt{2} \cdot CM$
$CM = \frac{2}{5\sqrt{2}} \cdot S_{\triangle ACM} = \frac{2}{5\sqrt{2}} \cdot \frac{1}{2} \cdot 5\sqrt{2} \cdot CM = \boxed{1}$ см.
По теореме Пифагора найдем длину гипотенузы АС:
$AC = \sqrt{AB^2 + BC^2} = \sqrt{5^2 + 5^2} = \sqrt{50} = 5\sqrt{2}$ см.
Тогда площадь треугольника АСМ равна:
$S_{\triangle ACM} = \frac{1}{2} \cdot AC \cdot CM = \frac{1}{2} \cdot 5\sqrt{2} \cdot CM$
Из условия задачи известно, что расстояние от точки М до прямой АВ равно 6 см, то есть точка М находится на расстоянии 6 см от основания треугольника.
Обозначим основание треугольника АС как х. Тогда основание треугольника СМ равно (х - 6).
Используя формулу для площади треугольника через основание и высоту, получаем:
$S_{\triangle ACM} = \frac{1}{2} \cdot (х - 6) \cdot CM$
Таким образом, мы получили два выражения для площади треугольника АСМ. Приравняв их, получим уравнение:
$\frac{1}{2} \cdot 5\sqrt{2} \cdot CM = \frac{1}{2} \cdot (х - 6) \cdot CM$
Сокращая на $\frac{1}{2} \cdot CM$, получим:
$5\sqrt{2} = х - 6$
Отсюда находим основание треугольника АС:
$х = 5\sqrt{2} + 6$
Теперь можем найти длину отрезка СМ, используя любое из двух выражений для площади треугольника АСМ:
$S_{\triangle ACM} = \frac{1}{2} \cdot 5\sqrt{2} \cdot CM = \frac{1}{2} \cdot (5\sqrt{2} + 6 - 6) \cdot CM = \frac{1}{2} \cdot 5\sqrt{2} \cdot CM$
$CM = \frac{2}{5\sqrt{2}} \cdot S_{\triangle ACM} = \frac{2}{5\sqrt{2}} \cdot \frac{1}{2} \cdot 5\sqrt{2} \cdot CM = \boxed{1}$ см.
0
·
Хороший ответ
27 апреля 2023 17:24
Остались вопросы?
Еще вопросы по категории Геометрия
Сформулируйте и докажите теорему о вертикальных углах...
3 найти углы прямоугольной трапеции если больший из них равен 120 срочно ...
ПОМОГИТЕ ПОЖАЛУЙСТА!!! СРОЧНО!!! ЗАДАНИЕ1:Чему равны углы треугольника,на которые высота разбивает равносторонний треугольник? ЗАДАНИЕ2:ДОКАЗАТЬ,ЧТО...
прямые содержащие высоты АА1 И ВВ1 треугольника ABC пересекаются в точке H угол B-тупой Угол C-20.Найдите угол AHB...
Сторона основания правильной треугольной призмы равна 6 см, а диагональ боковой грани 10 см. Найдите площадь боковой и полной поверхности призмы...
Все предметы