Лучшие помощники
- Megamozg 2180 б
- Matalya1 1800 б
- DevAdmin 1690 б
- arkasha_bortnikov 840 б
- Dwayne_Johnson 840 б
Поскольку треугольник АВС прямоугольный и равнобедренный, то его катеты равны и равны 5 см каждый. Тогда отрезок СМ является высотой треугольника АСМ, опущенной на гипотенузу.
По теореме Пифагора найдем длину гипотенузы АС:
$AC = \sqrt{AB^2 + BC^2} = \sqrt{5^2 + 5^2} = \sqrt{50} = 5\sqrt{2}$ см.
Тогда площадь треугольника АСМ равна:
$S_{\triangle ACM} = \frac{1}{2} \cdot AC \cdot CM = \frac{1}{2} \cdot 5\sqrt{2} \cdot CM$
Из условия задачи известно, что расстояние от точки М до прямой АВ равно 6 см, то есть точка М находится на расстоянии 6 см от основания треугольника.
Обозначим основание треугольника АС как х. Тогда основание треугольника СМ равно (х - 6).
Используя формулу для площади треугольника через основание и высоту, получаем:
$S_{\triangle ACM} = \frac{1}{2} \cdot (х - 6) \cdot CM$
Таким образом, мы получили два выражения для площади треугольника АСМ. Приравняв их, получим уравнение:
$\frac{1}{2} \cdot 5\sqrt{2} \cdot CM = \frac{1}{2} \cdot (х - 6) \cdot CM$
Сокращая на $\frac{1}{2} \cdot CM$, получим:
$5\sqrt{2} = х - 6$
Отсюда находим основание треугольника АС:
$х = 5\sqrt{2} + 6$
Теперь можем найти длину отрезка СМ, используя любое из двух выражений для площади треугольника АСМ:
$S_{\triangle ACM} = \frac{1}{2} \cdot 5\sqrt{2} \cdot CM = \frac{1}{2} \cdot (5\sqrt{2} + 6 - 6) \cdot CM = \frac{1}{2} \cdot 5\sqrt{2} \cdot CM$
$CM = \frac{2}{5\sqrt{2}} \cdot S_{\triangle ACM} = \frac{2}{5\sqrt{2}} \cdot \frac{1}{2} \cdot 5\sqrt{2} \cdot CM = \boxed{1}$ см.
По теореме Пифагора найдем длину гипотенузы АС:
$AC = \sqrt{AB^2 + BC^2} = \sqrt{5^2 + 5^2} = \sqrt{50} = 5\sqrt{2}$ см.
Тогда площадь треугольника АСМ равна:
$S_{\triangle ACM} = \frac{1}{2} \cdot AC \cdot CM = \frac{1}{2} \cdot 5\sqrt{2} \cdot CM$
Из условия задачи известно, что расстояние от точки М до прямой АВ равно 6 см, то есть точка М находится на расстоянии 6 см от основания треугольника.
Обозначим основание треугольника АС как х. Тогда основание треугольника СМ равно (х - 6).
Используя формулу для площади треугольника через основание и высоту, получаем:
$S_{\triangle ACM} = \frac{1}{2} \cdot (х - 6) \cdot CM$
Таким образом, мы получили два выражения для площади треугольника АСМ. Приравняв их, получим уравнение:
$\frac{1}{2} \cdot 5\sqrt{2} \cdot CM = \frac{1}{2} \cdot (х - 6) \cdot CM$
Сокращая на $\frac{1}{2} \cdot CM$, получим:
$5\sqrt{2} = х - 6$
Отсюда находим основание треугольника АС:
$х = 5\sqrt{2} + 6$
Теперь можем найти длину отрезка СМ, используя любое из двух выражений для площади треугольника АСМ:
$S_{\triangle ACM} = \frac{1}{2} \cdot 5\sqrt{2} \cdot CM = \frac{1}{2} \cdot (5\sqrt{2} + 6 - 6) \cdot CM = \frac{1}{2} \cdot 5\sqrt{2} \cdot CM$
$CM = \frac{2}{5\sqrt{2}} \cdot S_{\triangle ACM} = \frac{2}{5\sqrt{2}} \cdot \frac{1}{2} \cdot 5\sqrt{2} \cdot CM = \boxed{1}$ см.
0
·
Хороший ответ
27 апреля 2023 17:24
Остались вопросы?
Еще вопросы по категории Геометрия
В прямоугольном треугольнике DCE с прямым углом С проведена биссектриса EF? причем EF=13 см. Найдите расстояние от точки F до прямой DE. Срочно!!...
№1. Средние линии треугольника относятся как 2:2:4, а периметр треугольника равен 45 см . Найдите стороны треугольника. №2.В прямоугольном треугольник...
Площадь полной поверхности прямоугольного параллелепипеда равна 94 см^2. Найдите ребра AB....
Два внешних угла треугольника при разных вершинах равны. Периметр треугольника равен 74 см, а одна сторон равна 16 см. Найдите две другие стороны треу...
На клетчатой бумаге с размером клетки 1×1 изображён равносторонний треугольник. Найдите радиус описанной около него окружности. Напишите очень подробн...
Все предметы