Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 865 б
Для решения задачи нам нужно знать формулу для вычисления высоты правильной четырехугольной пирамиды:
$h = \frac{\sqrt{2}}{2}a$
где $h$ - высота пирамиды, $a$ - длина стороны основания.
Из условия задачи мы знаем, что боковая сторона равна 30 см. Так как пирамида правильная, то все стороны основания равны между собой. Пусть длина стороны основания равна $x$ см. Тогда по теореме Пифагора:
$(\frac{1}{2}x)^2 + 30^2 = (\frac{1}{2}x\sqrt{2})^2$
$\frac{1}{4}x^2 + 900 = \frac{1}{2}x^2$
$x^2 = 1800$
$x = 30\sqrt{2}$
Теперь мы можем вычислить высоту пирамиды:
$h = \frac{\sqrt{2}}{2} \cdot 30\sqrt{2} = 30$
Ответ: высота правильной четырехугольной пирамиды равна 30 см.
$h = \frac{\sqrt{2}}{2}a$
где $h$ - высота пирамиды, $a$ - длина стороны основания.
Из условия задачи мы знаем, что боковая сторона равна 30 см. Так как пирамида правильная, то все стороны основания равны между собой. Пусть длина стороны основания равна $x$ см. Тогда по теореме Пифагора:
$(\frac{1}{2}x)^2 + 30^2 = (\frac{1}{2}x\sqrt{2})^2$
$\frac{1}{4}x^2 + 900 = \frac{1}{2}x^2$
$x^2 = 1800$
$x = 30\sqrt{2}$
Теперь мы можем вычислить высоту пирамиды:
$h = \frac{\sqrt{2}}{2} \cdot 30\sqrt{2} = 30$
Ответ: высота правильной четырехугольной пирамиды равна 30 см.
0
·
Хороший ответ
1 мая 2023 06:45
Остались вопросы?
Еще вопросы по категории Геометрия
На рисунке предоставлен параллелограмм KLMH. найди периметр параллелограмма ...
1. На какой прямой можно взять точки принадлежащие и не принадлежащие ей? 1) на любой 2) на параллельной данной 3) на перпендикулярной данной 2....
Параллельные плоскости альфа и бета пересекают сторону АВ угла ВАС соответственно в точках А1 и А2, а сторону АС этого угла в В1 и В2. Найти АА1 если...
Напишите уравнение сферы радиуса R с центром А, если: А (-1;2;2)- R=1....
Какие из следующих утверждений верны? 1. Существуют три прямые,которые проходят через одну точку. 2.Все высоты равностороннего треугольника равны. 3.Е...