Лучшие помощники
- Megamozg 2190 б
- Matalya1 1800 б
- DevAdmin 1695 б
- arkasha_bortnikov 860 б
- Dwayne_Johnson 845 б
Для решения задачи нам нужно знать формулу для вычисления высоты правильной четырехугольной пирамиды:
$h = \frac{\sqrt{2}}{2}a$
где $h$ - высота пирамиды, $a$ - длина стороны основания.
Из условия задачи мы знаем, что боковая сторона равна 30 см. Так как пирамида правильная, то все стороны основания равны между собой. Пусть длина стороны основания равна $x$ см. Тогда по теореме Пифагора:
$(\frac{1}{2}x)^2 + 30^2 = (\frac{1}{2}x\sqrt{2})^2$
$\frac{1}{4}x^2 + 900 = \frac{1}{2}x^2$
$x^2 = 1800$
$x = 30\sqrt{2}$
Теперь мы можем вычислить высоту пирамиды:
$h = \frac{\sqrt{2}}{2} \cdot 30\sqrt{2} = 30$
Ответ: высота правильной четырехугольной пирамиды равна 30 см.
$h = \frac{\sqrt{2}}{2}a$
где $h$ - высота пирамиды, $a$ - длина стороны основания.
Из условия задачи мы знаем, что боковая сторона равна 30 см. Так как пирамида правильная, то все стороны основания равны между собой. Пусть длина стороны основания равна $x$ см. Тогда по теореме Пифагора:
$(\frac{1}{2}x)^2 + 30^2 = (\frac{1}{2}x\sqrt{2})^2$
$\frac{1}{4}x^2 + 900 = \frac{1}{2}x^2$
$x^2 = 1800$
$x = 30\sqrt{2}$
Теперь мы можем вычислить высоту пирамиды:
$h = \frac{\sqrt{2}}{2} \cdot 30\sqrt{2} = 30$
Ответ: высота правильной четырехугольной пирамиды равна 30 см.
0
·
Хороший ответ
1 мая 2023 06:45
Остались вопросы?
Еще вопросы по категории Геометрия
В ромбе одна из диагоналей равна стороне найти углы ромба...
Сторона равностороннего треугольника равна 12 корень из 3 Найдите его медиану....
объем одного шара в 27 раз больше объёма другого. во сколько раз площадь поверхности первого шара больше площади поверхности второго ???...
Сформулировать и доказать свойство углов при основании равнобедренного треугольника...
Найдите площадь прямоугольной трапеции с основанием 10 см и 18 см,если ее большая боковая сторона образует с большим основанием угол 45градусов...
Все предметы