Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
Для решения задачи нам нужно знать формулу для вычисления высоты правильной четырехугольной пирамиды:
$h = \frac{\sqrt{2}}{2}a$
где $h$ - высота пирамиды, $a$ - длина стороны основания.
Из условия задачи мы знаем, что боковая сторона равна 30 см. Так как пирамида правильная, то все стороны основания равны между собой. Пусть длина стороны основания равна $x$ см. Тогда по теореме Пифагора:
$(\frac{1}{2}x)^2 + 30^2 = (\frac{1}{2}x\sqrt{2})^2$
$\frac{1}{4}x^2 + 900 = \frac{1}{2}x^2$
$x^2 = 1800$
$x = 30\sqrt{2}$
Теперь мы можем вычислить высоту пирамиды:
$h = \frac{\sqrt{2}}{2} \cdot 30\sqrt{2} = 30$
Ответ: высота правильной четырехугольной пирамиды равна 30 см.
$h = \frac{\sqrt{2}}{2}a$
где $h$ - высота пирамиды, $a$ - длина стороны основания.
Из условия задачи мы знаем, что боковая сторона равна 30 см. Так как пирамида правильная, то все стороны основания равны между собой. Пусть длина стороны основания равна $x$ см. Тогда по теореме Пифагора:
$(\frac{1}{2}x)^2 + 30^2 = (\frac{1}{2}x\sqrt{2})^2$
$\frac{1}{4}x^2 + 900 = \frac{1}{2}x^2$
$x^2 = 1800$
$x = 30\sqrt{2}$
Теперь мы можем вычислить высоту пирамиды:
$h = \frac{\sqrt{2}}{2} \cdot 30\sqrt{2} = 30$
Ответ: высота правильной четырехугольной пирамиды равна 30 см.
0
·
Хороший ответ
1 мая 2023 06:45
Остались вопросы?
Еще вопросы по категории Геометрия
Найти углы равнобедренного треугольника если угол противолежащий основанию равен 57 градусов С ПОЯСНЕНИЕМ ПОЖАЛУЙСТА...
Найдите радиус окружности, вписанной в прямоугольную трапецию. если основания равны 3 и 6...
помогите с геометрией, заранее спасибо...
1)Вычислите cos 150 градусов, sin 135, ctg 120. 2 Найдите площадь треугольника АБС если БС= 3см, АБ= 18 ,угол Б=135 градусам...
Катет прямоугольного треугольника равен 10 см, а гипотенуза равна 26 см. Вычисли длину второго катета....