Лучшие помощники
img

starboy

user-author-icon-1
Рейтинг за ответы0
user-author-icon-2
Зарегистрирован: 26 апреля 2023 15:50
4 мая 2023 07:27
176
Рассмотрим правильный тетраэдр, вписанный в сферу радиуса $R$. Ребро такого тетраэдра равно $\sqrt{2}R$. Около правильного тетраэдра можно описать цилиндр, основанием которого является описанная окружность, а высота равна $2R$. Так как сторона тетраэдра равна 1, то радиус описанной окружности равен половине диагонали грани тетраэдра, то есть $\frac{\sqrt{2}}{2}$. Значит, радиус цилиндра равен $\frac{\sqrt{2}}{2}$. Так как высота цилиндра равна удвоенному радиусу описанной окружности правильного тетраэдра, то высота цилиндра равна $2\cdot R = 2\cdot\frac{1}{\sqrt{2}} = \sqrt{2}$. Итак, радиус цилиндра равен $\frac{\sqrt{2}}{2}$, а высота цилиндра равна $\sqrt{2}$.
0
·
Хороший ответ
2 мая 2023 03:03
Для решения задачи нам необходимо знать боковую грань пирамиды. Эта грань является прямоугольным треугольником ОРС, где ОР — высота боковой грани, ОС — одна из боковых сторон основания, ОР и ОС перпендикулярны. Из теоремы Пифагора для треугольника ОРС: $OR^2 = OP^2 - PR^2 = (\frac{OD}{2})^2 - RO^2 = 2^2 - 8^2 = -60$ Так как $OR$ является длиной отрезка, то ее значение не может быть отрицательным. Значит, такой треугольник не существует, и задача не имеет решения.
0
·
Хороший ответ
1 мая 2023 06:48