Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
2 мая 2023 06:40
500
№ 5. Дан прямоугольный треугольник АВС, где АВ - гипотенуза. В данный треугольник вписана окружность с центром О, причем данная окружность касается гипотенузы в точке Н и АН = 4 см, ВН = 6 см. Найдите периметр треугольника, если радиус вписанной окружности равен 2 см. помогите пж
1
ответ
Для начала найдем длину гипотенузы АВ. По теореме Пифагора:
AB^2 = AH^2 + BH^2 = 4^2 + 6^2 = 52
AB = sqrt(52) = 2sqrt(13)
Также по известной формуле для радиуса вписанной окружности:
r = S / p, где S - площадь треугольника, p - полупериметр треугольника
r = 2, S = p*r = (a+b+c)*r/2, где a, b, c - стороны треугольника
Тогда:
2 = (2sqrt(13) + 4 + 6)*2/2p
p = (2sqrt(13) + 10)/2 = sqrt(13) + 5
Теперь можем найти длины катетов:
AH = AB*BH/AB = 6sqrt(13)/sqrt(13) = 6
BH = AB*AH/AB = 4sqrt(13)/sqrt(13) = 4
Таким образом, периметр треугольника АВС равен:
AB + AH + BH = 2sqrt(13) + 6 + 4 = 10 + 2sqrt(13) см.
AB^2 = AH^2 + BH^2 = 4^2 + 6^2 = 52
AB = sqrt(52) = 2sqrt(13)
Также по известной формуле для радиуса вписанной окружности:
r = S / p, где S - площадь треугольника, p - полупериметр треугольника
r = 2, S = p*r = (a+b+c)*r/2, где a, b, c - стороны треугольника
Тогда:
2 = (2sqrt(13) + 4 + 6)*2/2p
p = (2sqrt(13) + 10)/2 = sqrt(13) + 5
Теперь можем найти длины катетов:
AH = AB*BH/AB = 6sqrt(13)/sqrt(13) = 6
BH = AB*AH/AB = 4sqrt(13)/sqrt(13) = 4
Таким образом, периметр треугольника АВС равен:
AB + AH + BH = 2sqrt(13) + 6 + 4 = 10 + 2sqrt(13) см.
1
·
Хороший ответ
2 мая 2023 06:42
Остались вопросы?
Еще вопросы по категории Геометрия
Найдите площадь трапеции диагонали которой равны 15 и 7, а средняя линия равна 10. С подробным пояснением !...
Центральный угол AOB равен 60. опирается на хорду AB длиной 4. найдите радиус окружности....
Ребро правильного тетраэдра равно 12 см. Найти высоту тетраэдра. Мне ответ сверить...
Осевое сечение цилиндра-квадрат,площадь основания цилиндра равна 25П см2.Найдите площадь боковой поверхности цилиндра...
В прямоугольном треугольнике ABC катет AC = 20 см, катет CB = 15 см. Найдите, во сколько раз длина гипотенузы АВ меньше длины суммы катетов. Ответ окр...