Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
2 мая 2023 06:40
523
№ 5. Дан прямоугольный треугольник АВС, где АВ - гипотенуза. В данный треугольник вписана окружность с центром О, причем данная окружность касается гипотенузы в точке Н и АН = 4 см, ВН = 6 см. Найдите периметр треугольника, если радиус вписанной окружности равен 2 см. помогите пж
1
ответ
Для начала найдем длину гипотенузы АВ. По теореме Пифагора:
AB^2 = AH^2 + BH^2 = 4^2 + 6^2 = 52
AB = sqrt(52) = 2sqrt(13)
Также по известной формуле для радиуса вписанной окружности:
r = S / p, где S - площадь треугольника, p - полупериметр треугольника
r = 2, S = p*r = (a+b+c)*r/2, где a, b, c - стороны треугольника
Тогда:
2 = (2sqrt(13) + 4 + 6)*2/2p
p = (2sqrt(13) + 10)/2 = sqrt(13) + 5
Теперь можем найти длины катетов:
AH = AB*BH/AB = 6sqrt(13)/sqrt(13) = 6
BH = AB*AH/AB = 4sqrt(13)/sqrt(13) = 4
Таким образом, периметр треугольника АВС равен:
AB + AH + BH = 2sqrt(13) + 6 + 4 = 10 + 2sqrt(13) см.
AB^2 = AH^2 + BH^2 = 4^2 + 6^2 = 52
AB = sqrt(52) = 2sqrt(13)
Также по известной формуле для радиуса вписанной окружности:
r = S / p, где S - площадь треугольника, p - полупериметр треугольника
r = 2, S = p*r = (a+b+c)*r/2, где a, b, c - стороны треугольника
Тогда:
2 = (2sqrt(13) + 4 + 6)*2/2p
p = (2sqrt(13) + 10)/2 = sqrt(13) + 5
Теперь можем найти длины катетов:
AH = AB*BH/AB = 6sqrt(13)/sqrt(13) = 6
BH = AB*AH/AB = 4sqrt(13)/sqrt(13) = 4
Таким образом, периметр треугольника АВС равен:
AB + AH + BH = 2sqrt(13) + 6 + 4 = 10 + 2sqrt(13) см.
1
·
Хороший ответ
2 мая 2023 06:42
Остались вопросы?
Еще вопросы по категории Геометрия
Точка С-общая точка плоскости альфа и бета.Прямая проходит через точку С.Верно ли,что плоскости альфА и бета пересекаются по прямой с ? Ответ обясните...
боковая сторона равнобедренного треугольника равна 10 см,а его основание - 12 см.Найдите его площадь(подробно,и с рисунком пожалуйста:*)...
Дано: ABCD - пространственный четырехугольник, DA1:A1A=DB1:B1B=DC1:C1C Доказать: (ABC) || (A1B1C1) Пожалуйста, напишите очень подробно!...
угол при вершине противолежащей основанию равнобедренного треугольника равен 30 боковая сторона равна 18 найдите площадь этого треугольника...
Помоогите срочно Биссектриса равностороннего треугольника равна половине стороны треугольника.Это утверждение... 1.может быть верно 2.верно всегда 3.н...