Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1705 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 860 б
В полупроводниковой сверхрешетке наблюдаются осцилляции магиитосопротивления. При наблюдении осцилляций магнитная индукция направлена вдоль оси сверхрешётки, а электрический ток — перпендикулярно оси. В осцилляциях наблюдаются биения, т. е. присутствуют две близкие частоты осцилляций. Частота биений (низкочастотных изменений амплитуды осцилляций) равна. 1 Тл. Энергетический спектр сверхрешётки описывается
моделью сильной связи E=E + p2x+p2y −2t cos(pz d) . Эффективная масса электронов m равна 0 2m ħ
1/100 массы свободного электрона. Чему равен интеграл туннелирования t?
1
ответ
Для решения задачи необходимо воспользоваться формулой для частоты осцилляций магнитосопротивления в сверхрешетке:
f = (2eB)/(h * d)
где e - заряд электрона, B - магнитная индукция, h - постоянная Планка, d - расстояние между слоями сверхрешетки.
Из условия задачи известно, что f = 1 Тл = 1/(2π) Гц, B направлена вдоль оси сверхрешетки, поэтому её значение не влияет на решение задачи. Также известно, что электрический ток направлен перпендикулярно оси сверхрешетки, поэтому эффективный массовый транспортный коэффициент равен m.
Осталось выразить расстояние между слоями сверхрешетки d через интеграл туннелирования t и эффективную массу электрона m. Для этого воспользуемся формулой для энергетического спектра сверхрешетки:
E = E0 + (p_x^2 + p_y^2)/(2m) - 2t*cos(p_z*d)
где E0 - энергия валентной зоны, p_x, p_y, p_z - импульсы в разных направлениях.
Минимум энергии достигается при p_x = p_y = 0, поэтому
E = E0 - 2t*cos(p_z*d)
Дифференцируя это выражение по p_z, получаем
dp_z = (sin(p_z*d)*dt)/sqrt((E - E0)/2m)
Интегрируя это выражение от 0 до π/d, получаем
π/d = ∫(0 to π/d) dp_z = ∫(E_min to E_max) sqrt((E - E0)/2m)/|sin(p_z*d)| dE
Заменяя знак модуля на знак в интеграле, получаем
π/d = 2∫(E_min to E_max) sqrt((E - E0)/2m) cos(p_z*d) dE
Для упрощения вычислений заменим E на E0 + ΔE, где ΔE << E0. Тогда
π/d = 2∫(0 to ΔE) sqrt(ΔE/2m) cos(p_z*d) dΔE
= 2sqrt(ΔE/2m) * sin(p_z*d) |(0 to ΔE)
= 2sqrt(ΔE/2m) * sin(p_z*d)
Таким образом, интеграл туннелирования t равен
t = (ħ^2/(2m*d^2)) * cos(π/d)
Подставляя известные значения, получаем
t = (ħ^2/(0.4m*d^2)) * cos(π/d)
Осталось найти значение d из формулы для частоты осцилляций:
f = (2eB)/(h * d)
d = (2eB)/(h * f)
Подставляя это значение в выражение для t, получаем
t = (ħ^2*h^2*f^2)/(0.4m*(2eB)^2) * cos(2πh/eB)
Ответ: интеграл туннелирования t равен (ħ^2*h^2*f^2)/(0.4m*(2eB)^2) * cos(2πh/eB).
f = (2eB)/(h * d)
где e - заряд электрона, B - магнитная индукция, h - постоянная Планка, d - расстояние между слоями сверхрешетки.
Из условия задачи известно, что f = 1 Тл = 1/(2π) Гц, B направлена вдоль оси сверхрешетки, поэтому её значение не влияет на решение задачи. Также известно, что электрический ток направлен перпендикулярно оси сверхрешетки, поэтому эффективный массовый транспортный коэффициент равен m.
Осталось выразить расстояние между слоями сверхрешетки d через интеграл туннелирования t и эффективную массу электрона m. Для этого воспользуемся формулой для энергетического спектра сверхрешетки:
E = E0 + (p_x^2 + p_y^2)/(2m) - 2t*cos(p_z*d)
где E0 - энергия валентной зоны, p_x, p_y, p_z - импульсы в разных направлениях.
Минимум энергии достигается при p_x = p_y = 0, поэтому
E = E0 - 2t*cos(p_z*d)
Дифференцируя это выражение по p_z, получаем
dp_z = (sin(p_z*d)*dt)/sqrt((E - E0)/2m)
Интегрируя это выражение от 0 до π/d, получаем
π/d = ∫(0 to π/d) dp_z = ∫(E_min to E_max) sqrt((E - E0)/2m)/|sin(p_z*d)| dE
Заменяя знак модуля на знак в интеграле, получаем
π/d = 2∫(E_min to E_max) sqrt((E - E0)/2m) cos(p_z*d) dE
Для упрощения вычислений заменим E на E0 + ΔE, где ΔE << E0. Тогда
π/d = 2∫(0 to ΔE) sqrt(ΔE/2m) cos(p_z*d) dΔE
= 2sqrt(ΔE/2m) * sin(p_z*d) |(0 to ΔE)
= 2sqrt(ΔE/2m) * sin(p_z*d)
Таким образом, интеграл туннелирования t равен
t = (ħ^2/(2m*d^2)) * cos(π/d)
Подставляя известные значения, получаем
t = (ħ^2/(0.4m*d^2)) * cos(π/d)
Осталось найти значение d из формулы для частоты осцилляций:
f = (2eB)/(h * d)
d = (2eB)/(h * f)
Подставляя это значение в выражение для t, получаем
t = (ħ^2*h^2*f^2)/(0.4m*(2eB)^2) * cos(2πh/eB)
Ответ: интеграл туннелирования t равен (ħ^2*h^2*f^2)/(0.4m*(2eB)^2) * cos(2πh/eB).
0
·
Хороший ответ
2 мая 2023 18:21
Остались вопросы?
Еще вопросы по категории Физика
Боря с папой ехали на машине по горизонтальной дороге. Во время остановки на светофоре Боре стало интересно: какое давление оказывает машина на дорогу...
Почему при спасении человека провалившегося под лёд ему бросают широкую доску не приближаясь к краю полыньи...
Предположив, что корона царя Гиерона в воздухе весит 20 Н, а в воде 18,75 Н, вычислите плотность вещества короны. Полагая, что к золоту было подмешано...
Какая идея лежит в основе принципа действия счетчика Гейгера?...
СРОЧНО Лист бумаги формата А4 имеет размеры а = 210 мм и b = 290 мм. Поверхностная плотность этой бумаги (масса листа единичной площади) P = 0, 072 кг...
Все предметы