Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
Помогите с физикой!
Частица участвует одновременно в двух гармонических колебаниях, совершающихся по взаимно перпендикулярным направлениям. Заданы частоты колебаний одинаковы и равны по 2 Гц, их амплитуды 3 см и 7 см, а начальные фазы π/2 рад и 4π/3 рад соответственно. Напишите уравнения исходных колебаний. Найдите уравнение траектории результирующего движения в координатах ХОY и постройте ее график. Укажите на графике положение частицы в начальный момент времени и направление движения по траектории.
1
ответ
Уравнения исходных колебаний можно записать в виде:
$x_1 = 3\sin(2\pi t + \frac{\pi}{2})$
$x_2 = 7\sin(2\pi t + \frac{4\pi}{3})$
Для нахождения уравнения траектории результирующего движения необходимо сложить движения по осям X и Y:
$x = x_1 + x_2 = 3\sin(2\pi t + \frac{\pi}{2}) + 7\sin(2\pi t + \frac{4\pi}{3})$
$y = y_1 + y_2 = 3\cos(2\pi t + \frac{\pi}{2}) + 7\cos(2\pi t + \frac{4\pi}{3})$
Выразим $t$ из первого уравнения и подставим во второе:
$y = 3\cos(\arcsin(\frac{x-7\sin(\frac{4\pi}{3})}{3}) + \frac{\pi}{2}) + 7\cos(2\pi t + \frac{4\pi}{3})$
Упростим:
$y = 3\cos(\arcsin(\frac{x+7\sqrt{3}}{6}) + \frac{\pi}{2}) - 7\sin(\frac{4\pi}{3})$
Таким образом, уравнение траектории имеет вид:
$y = -\frac{3\sqrt{3}}{2}\sqrt{1-\frac{(x+7\sqrt{3}/2)^2}{27}} - \frac{7}{2}$
Построим график этой функции:

Частица в начальный момент времени находится в точке (-4, -8) и движется по траектории, изображенной на графике, в направлении, обратном часовой стрелке.
$x_1 = 3\sin(2\pi t + \frac{\pi}{2})$
$x_2 = 7\sin(2\pi t + \frac{4\pi}{3})$
Для нахождения уравнения траектории результирующего движения необходимо сложить движения по осям X и Y:
$x = x_1 + x_2 = 3\sin(2\pi t + \frac{\pi}{2}) + 7\sin(2\pi t + \frac{4\pi}{3})$
$y = y_1 + y_2 = 3\cos(2\pi t + \frac{\pi}{2}) + 7\cos(2\pi t + \frac{4\pi}{3})$
Выразим $t$ из первого уравнения и подставим во второе:
$y = 3\cos(\arcsin(\frac{x-7\sin(\frac{4\pi}{3})}{3}) + \frac{\pi}{2}) + 7\cos(2\pi t + \frac{4\pi}{3})$
Упростим:
$y = 3\cos(\arcsin(\frac{x+7\sqrt{3}}{6}) + \frac{\pi}{2}) - 7\sin(\frac{4\pi}{3})$
Таким образом, уравнение траектории имеет вид:
$y = -\frac{3\sqrt{3}}{2}\sqrt{1-\frac{(x+7\sqrt{3}/2)^2}{27}} - \frac{7}{2}$
Построим график этой функции:

Частица в начальный момент времени находится в точке (-4, -8) и движется по траектории, изображенной на графике, в направлении, обратном часовой стрелке.
0
·
Хороший ответ
3 мая 2023 17:33
Остались вопросы?
Еще вопросы по категории Физика
Что такое спектр??????...
трактор ДТ-75М массой 6610 кг имеет опорную площадь обеих гусениц 1,4 м2.Какое давление оказывает трактор на почву???...
Егор решил купить домой искусственную елку на Новый год. Ему нужна была елка высотой не более 1,8 м, чтобы дерево можно было поставить в квартире. Его...
Какие виды маятников бывают в физике?...
Определите объем стальной плиты, полностью погруженной в воду, если на нее действует выталкивающая сила 35Н...