Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 865 б
Помогите с физикой!
Частица участвует одновременно в двух гармонических колебаниях, совершающихся по взаимно перпендикулярным направлениям. Заданы частоты колебаний одинаковы и равны по 2 Гц, их амплитуды 3 см и 7 см, а начальные фазы π/2 рад и 4π/3 рад соответственно. Напишите уравнения исходных колебаний. Найдите уравнение траектории результирующего движения в координатах ХОY и постройте ее график. Укажите на графике положение частицы в начальный момент времени и направление движения по траектории.
1
ответ
Уравнения исходных колебаний можно записать в виде:
$x_1 = 3\sin(2\pi t + \frac{\pi}{2})$
$x_2 = 7\sin(2\pi t + \frac{4\pi}{3})$
Для нахождения уравнения траектории результирующего движения необходимо сложить движения по осям X и Y:
$x = x_1 + x_2 = 3\sin(2\pi t + \frac{\pi}{2}) + 7\sin(2\pi t + \frac{4\pi}{3})$
$y = y_1 + y_2 = 3\cos(2\pi t + \frac{\pi}{2}) + 7\cos(2\pi t + \frac{4\pi}{3})$
Выразим $t$ из первого уравнения и подставим во второе:
$y = 3\cos(\arcsin(\frac{x-7\sin(\frac{4\pi}{3})}{3}) + \frac{\pi}{2}) + 7\cos(2\pi t + \frac{4\pi}{3})$
Упростим:
$y = 3\cos(\arcsin(\frac{x+7\sqrt{3}}{6}) + \frac{\pi}{2}) - 7\sin(\frac{4\pi}{3})$
Таким образом, уравнение траектории имеет вид:
$y = -\frac{3\sqrt{3}}{2}\sqrt{1-\frac{(x+7\sqrt{3}/2)^2}{27}} - \frac{7}{2}$
Построим график этой функции:

Частица в начальный момент времени находится в точке (-4, -8) и движется по траектории, изображенной на графике, в направлении, обратном часовой стрелке.
$x_1 = 3\sin(2\pi t + \frac{\pi}{2})$
$x_2 = 7\sin(2\pi t + \frac{4\pi}{3})$
Для нахождения уравнения траектории результирующего движения необходимо сложить движения по осям X и Y:
$x = x_1 + x_2 = 3\sin(2\pi t + \frac{\pi}{2}) + 7\sin(2\pi t + \frac{4\pi}{3})$
$y = y_1 + y_2 = 3\cos(2\pi t + \frac{\pi}{2}) + 7\cos(2\pi t + \frac{4\pi}{3})$
Выразим $t$ из первого уравнения и подставим во второе:
$y = 3\cos(\arcsin(\frac{x-7\sin(\frac{4\pi}{3})}{3}) + \frac{\pi}{2}) + 7\cos(2\pi t + \frac{4\pi}{3})$
Упростим:
$y = 3\cos(\arcsin(\frac{x+7\sqrt{3}}{6}) + \frac{\pi}{2}) - 7\sin(\frac{4\pi}{3})$
Таким образом, уравнение траектории имеет вид:
$y = -\frac{3\sqrt{3}}{2}\sqrt{1-\frac{(x+7\sqrt{3}/2)^2}{27}} - \frac{7}{2}$
Построим график этой функции:

Частица в начальный момент времени находится в точке (-4, -8) и движется по траектории, изображенной на графике, в направлении, обратном часовой стрелке.
0
·
Хороший ответ
3 мая 2023 17:33
Остались вопросы?
Еще вопросы по категории Физика
Предлагаемую ниже таблицу расчертите на бланке и аргументированно укажите, в какой столбец (один или несколько) вы впишете следующие явления: тиканье...
1. Пылинка, имеющая заряд +10 -11 Кл, влетела в однородное электрическое поле напряженности 10 5 В/м в направлении пр...
Самолёт пролетел по прямой 300 км,затем повернул под прямым углом и пролетел ещё 400 км.Чему равен модуль вектора перемещения?...
В цепь переменного тока с частотой 50 Гц включено активное сопротивление 5 Ом. Амперметр показывает силу тока 10 А. Определите мгновенное значение нап...
Площадь меньшего поршня гидравлического пресса 15 см (в квадрате), площадь большего поршня 300 см (в квадрате). На меньший поршень действует сила 350...