Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 865 б
13 мая 2023 14:30
280
В основании тетраэдра PABC правильный треугольник ABC, боковые рёбра тетраэдра равны. Найдите градусную меру угла между прямой PC и плоскостью основания тетраэдра, если PA:BC=2:3.
1
ответ
Обозначим через $O$ центр основания треугольной пирамиды $PABC$. Так как треугольник $ABC$ правильный, то $O$ совпадает с центром описанной окружности этого треугольника. Проведём высоту $OH$ пирамиды $PABC$ из вершины $P$ на плоскость $ABC$. Тогда $OH$ является высотой правильного треугольника $ABC$, и $OP$ является медианой этого треугольника. Значит, $OP$ делит $OH$ пополам. Обозначим $R$ — середину отрезка $OH$. Так как $OH$ является биссектрисой угла $POC$, то точка $R$ лежит на прямой $PC$. Далее, так как $OR$ является медианой треугольника $OHP$, то $OR$ делит угол $POH$ пополам. Обозначим через $\alpha$ угол $POH$. Тогда угол между прямой $PC$ и плоскостью основания равен углу $ROC$, который равен $90^\circ - \alpha/2$.
Осталось найти $\alpha$. Обозначим $a = BC$ — длину стороны треугольника $ABC$. Так как $PA : BC = 2 : 3$, то $PA = 2a/5$. Обозначим через $H$ высоту треугольника $ABC$ и через $R'$ середину отрезка $OH$. Тогда $PR' = OP/2 = OH/2 = H/2 \cdot \sqrt{3}$. Значит,
$$
\tan \alpha = \frac{PR'}{PA} = \frac{H\sqrt{3}/2}{2a/5} = \frac{5H\sqrt{3}}{4a}.
$$
С другой стороны, $\tan \alpha = OH/OP = H/\sqrt{4a^2/25 - H^2}$. Сравнивая два выражения для $\tan \alpha$, получаем уравнение на $H$:
$$
\frac{5H\sqrt{3}}{4a} = \frac{H}{\sqrt{4a^2/25 - H^2}},
$$
откуда $H = a\sqrt{3}/2$. Значит,
$$
\tan \alpha = \frac{5H\sqrt{3}}{4a} = \frac{5a\sqrt{3}}{8a} = \frac{5\sqrt{3}}{8},
$$
и угол между прямой $PC$ и плоскостью основания равен $90^\circ - \alpha/2 = \boxed{60^\circ}$.
Осталось найти $\alpha$. Обозначим $a = BC$ — длину стороны треугольника $ABC$. Так как $PA : BC = 2 : 3$, то $PA = 2a/5$. Обозначим через $H$ высоту треугольника $ABC$ и через $R'$ середину отрезка $OH$. Тогда $PR' = OP/2 = OH/2 = H/2 \cdot \sqrt{3}$. Значит,
$$
\tan \alpha = \frac{PR'}{PA} = \frac{H\sqrt{3}/2}{2a/5} = \frac{5H\sqrt{3}}{4a}.
$$
С другой стороны, $\tan \alpha = OH/OP = H/\sqrt{4a^2/25 - H^2}$. Сравнивая два выражения для $\tan \alpha$, получаем уравнение на $H$:
$$
\frac{5H\sqrt{3}}{4a} = \frac{H}{\sqrt{4a^2/25 - H^2}},
$$
откуда $H = a\sqrt{3}/2$. Значит,
$$
\tan \alpha = \frac{5H\sqrt{3}}{4a} = \frac{5a\sqrt{3}}{8a} = \frac{5\sqrt{3}}{8},
$$
и угол между прямой $PC$ и плоскостью основания равен $90^\circ - \alpha/2 = \boxed{60^\circ}$.
0
·
Хороший ответ
13 мая 2023 14:33
Остались вопросы?
Еще вопросы по категории Математика
На 4 одинаковых платья пошло 16 м ситца.Сколько таких платьев получится из 20 м ситца? из 40 м?...
011 100 110 011 100 000 011 010 000 011 010 001 011 101 001 011 101 101 001 011 101 001 011 111 001 100 010 001 100 110 001 110 110 001 110 000...
Какова формула 1 пентанола?...
Сколько метров в 1,4 км?...
Какое количество квадратных сантиметров в одном квадратном метре?...