Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
14 мая 2023 12:06
674
Касательная к вписанной окружности треугольника ABC пересекает стороны AC и BC в точках D и K соответственно. Известно, что AB=8 см, BC=10 см, AC=14 см. Найдите периметр треугольника DCK.
1
ответ
Первым шагом найдем радиус вписанной окружности. Для этого воспользуемся формулой:
$r = \sqrt{\frac{(p-a)(p-b)(p-c)}{p}}$,
где $p$ - полупериметр треугольника, $a$, $b$, $c$ - длины сторон треугольника.
$p = \frac{a+b+c}{2} = \frac{8+10+14}{2} = 16$
$r = \sqrt{\frac{(16-8)(16-10)(16-14)}{16}} = 2$
Теперь построим касательные к окружности из точек $D$ и $K$. Они будут равны, так как касательные, проведенные из одной точки к окружности, равны по длине. Обозначим длину касательной как $x$.
Так как $AD$ и $CK$ являются высотами треугольника $ABC$, то мы можем записать следующие соотношения:
$AD = \frac{2S}{AC} = \frac{2\cdot \frac{1}{2} \cdot AB \cdot r}{AC} = \frac{8}{7}$
$CK = \frac{2S}{BC} = \frac{2\cdot \frac{1}{2} \cdot AC \cdot r}{BC} = \frac{4}{5} \cdot 2 = \frac{8}{5}$
Теперь можем найти длину стороны $DC$:
$DC = AC - AD - CK = 14 - \frac{8}{7} - \frac{8}{5} = \frac{22}{35}$
Периметр треугольника $DCK$ будет равен:
$P = DC + CK + KD = \frac{22}{35} + \frac{8}{5} + \frac{8}{5} = \frac{134}{35} \approx 3.83$ см.
$r = \sqrt{\frac{(p-a)(p-b)(p-c)}{p}}$,
где $p$ - полупериметр треугольника, $a$, $b$, $c$ - длины сторон треугольника.
$p = \frac{a+b+c}{2} = \frac{8+10+14}{2} = 16$
$r = \sqrt{\frac{(16-8)(16-10)(16-14)}{16}} = 2$
Теперь построим касательные к окружности из точек $D$ и $K$. Они будут равны, так как касательные, проведенные из одной точки к окружности, равны по длине. Обозначим длину касательной как $x$.
Так как $AD$ и $CK$ являются высотами треугольника $ABC$, то мы можем записать следующие соотношения:
$AD = \frac{2S}{AC} = \frac{2\cdot \frac{1}{2} \cdot AB \cdot r}{AC} = \frac{8}{7}$
$CK = \frac{2S}{BC} = \frac{2\cdot \frac{1}{2} \cdot AC \cdot r}{BC} = \frac{4}{5} \cdot 2 = \frac{8}{5}$
Теперь можем найти длину стороны $DC$:
$DC = AC - AD - CK = 14 - \frac{8}{7} - \frac{8}{5} = \frac{22}{35}$
Периметр треугольника $DCK$ будет равен:
$P = DC + CK + KD = \frac{22}{35} + \frac{8}{5} + \frac{8}{5} = \frac{134}{35} \approx 3.83$ см.
0
·
Хороший ответ
14 мая 2023 12:09
Остались вопросы?
Еще вопросы по категории Геометрия
Начертите неразвернутый угол. отметьте две точки А, B, M и N так, чтобы все точки отрезка AB лежали внутри угла, а все точки отрезка MN лежали вне угл...
Окружность, вписанная в равнобедренный треугольник, делит в точке касания одну из боковых сторон на два отрезка, которые равны 4 см и 3 см , считая от...
В треугольнике abc угол с равен 90 ch-высота bc=5 ch=3 Найдите Sina...
Найдите длину окружности радиус которой равен 0,4 м...
Основание треугольника ровно 1 найдите длину отрезка, который соединяет середины двух его медиан, проведенных к боковым сторонам треугольника. СРОЧНО...