Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 865 б
Для нахождения производной данной функции воспользуемся правилом дифференцирования частного и цепным правилом дифференцирования:
f(x) = (4 - x^2) / x
f'(x) = [(x)(-2x) - (4 - x^2)(1)] / x^2
f'(x) = (-2x^2 + 4 - x^2) / x^2
f'(x) = (4 - 3x^2) / x^2
Таким образом, производная функции f(x) равна (4 - 3x^2) / x^2.
f(x) = (4 - x^2) / x
f'(x) = [(x)(-2x) - (4 - x^2)(1)] / x^2
f'(x) = (-2x^2 + 4 - x^2) / x^2
f'(x) = (4 - 3x^2) / x^2
Таким образом, производная функции f(x) равна (4 - 3x^2) / x^2.
1
·
Хороший ответ
28 мая 2023 11:06
Остались вопросы?
Еще вопросы по категории Алгебра
Решите уравнение (x-1)в кубе=8...
Y=sin (x-п/6) y=sin (x+п/2) пожалуйста, построить графики...
Магазин делает пенсионера скидку. Десяток яиц стоит в магазине 35 рублей, а пенсионер заплатил за них 31 рубль 15 копеек. Сколько процентов составила...
Что такое OY и OX алгебра ОЧЕНЬ НАДО ЗАРАНЕЕ СПАСИБО!!...
Сколько будет 3 в 4 степени...