Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
Применим правило дифференцирования суммы и произведения функций:
f'(x) = (x^3)' + (3x^2)' + (3x)' + (2)'
Вычислим производные мономов:
(x^3)' = 3x^2
(3x^2)' = 6x
(3x)' = 3
(2)' = 0
Подставим значения производных:
f'(x) = 3x^2 + 6x + 3
Ответ: f'(x) = 3x^2 + 6x + 3.
f'(x) = (x^3)' + (3x^2)' + (3x)' + (2)'
Вычислим производные мономов:
(x^3)' = 3x^2
(3x^2)' = 6x
(3x)' = 3
(2)' = 0
Подставим значения производных:
f'(x) = 3x^2 + 6x + 3
Ответ: f'(x) = 3x^2 + 6x + 3.
0
·
Хороший ответ
28 мая 2023 12:00
Остались вопросы?
Еще вопросы по категории Алгебра
ракета на подводных крыльях имеет скорость на 50 км/ч большую, чем скорость теплохода, и поэтому путь в 210 км она прошла на 7 ч 30 мин скорее чем теп...
96/7,2 = 4x+300/21 / - черта дроби решить уравнение...
Решите уравнение 4sin^2x-2sinx*cosx=1...
Решить неравенство: x² -2x -3 ≥0;...
Лиза написала квадратное уравнение. Артем стер у него свободный член, из‑за чего уравнение теперь выглядит вот так: 2x2−24x+⋯=0 Лиза не помнит, какое...