Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
Применим правило дифференцирования суммы и произведения функций:
f'(x) = (x^3)' + (3x^2)' + (3x)' + (2)'
Вычислим производные мономов:
(x^3)' = 3x^2
(3x^2)' = 6x
(3x)' = 3
(2)' = 0
Подставим значения производных:
f'(x) = 3x^2 + 6x + 3
Ответ: f'(x) = 3x^2 + 6x + 3.
f'(x) = (x^3)' + (3x^2)' + (3x)' + (2)'
Вычислим производные мономов:
(x^3)' = 3x^2
(3x^2)' = 6x
(3x)' = 3
(2)' = 0
Подставим значения производных:
f'(x) = 3x^2 + 6x + 3
Ответ: f'(x) = 3x^2 + 6x + 3.
0
·
Хороший ответ
28 мая 2023 12:00
Остались вопросы?
Еще вопросы по категории Алгебра
Найдите целую часть числа 1+1/sqrt(2) +1/sqrt(3) +...+1/sqrt(256)...
Какой наименьший угол в градусах образуют минутная и часовая стрелки в семь часов утра? Какой наименьший угол (в градусах) образуют м...
Задание 6 решите уравнение проточной...
Вычисли произведение корней уравнения:...
Функция 2 корня из х её производная...