Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1705 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 860 б
30 мая 2023 16:54
179
высшая математика найти площадь фигуры ограниченной линиями x+y=2, y=x^2, x=0, (x>=0)
1
ответ
Для решения этой задачи необходимо найти точки пересечения линий и границы области интегрирования.
Система уравнений x+y=2 и y=x^2 имеет единственное решение (1,1).
Таким образом, границы интегрирования будут следующими:
x от 0 до 1, y от x^2 до 2-x.
Используя эти границы, мы можем записать двойной интеграл для вычисления площади:
S = ∫(x=0 до 1)∫(y=x^2 до 2-x) dy dx
Вычислим первый интеграл:
∫(y=x^2 до 2-x) dy = (2-x) - x^2
Подставим его во второй интеграл:
S = ∫(x=0 до 1) [(2-x) - x^2] dx
Вычислим второй интеграл:
∫(x=0 до 1) [(2-x) - x^2] dx = (2/3) - (1/4) - (1/3) = 5/12
Таким образом, площадь фигуры ограниченной линиями x+y=2, y=x^2, x=0, (x>=0) равна 5/12.
Система уравнений x+y=2 и y=x^2 имеет единственное решение (1,1).
Таким образом, границы интегрирования будут следующими:
x от 0 до 1, y от x^2 до 2-x.
Используя эти границы, мы можем записать двойной интеграл для вычисления площади:
S = ∫(x=0 до 1)∫(y=x^2 до 2-x) dy dx
Вычислим первый интеграл:
∫(y=x^2 до 2-x) dy = (2-x) - x^2
Подставим его во второй интеграл:
S = ∫(x=0 до 1) [(2-x) - x^2] dx
Вычислим второй интеграл:
∫(x=0 до 1) [(2-x) - x^2] dx = (2/3) - (1/4) - (1/3) = 5/12
Таким образом, площадь фигуры ограниченной линиями x+y=2, y=x^2, x=0, (x>=0) равна 5/12.
0
·
Хороший ответ
30 мая 2023 16:57
Остались вопросы?
Еще вопросы по категории Математика
Замените неправильную дробь смешанным числом 23/6 варианты ответа 3 5/23. 4 1/6. 3 5/6. 2 5/6....
опрос: Какое значение имеет "10 ц"?...
Какое действие нужно выполнить с числами 0, 3 и 9 в задании '0 3х 9'?...
Сколько слов в списке?...
Каково максимальное КПД и средний срок службы лампы накаливания...
Все предметы