Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 865 б
30 мая 2023 16:54
212
высшая математика найти площадь фигуры ограниченной линиями x+y=2, y=x^2, x=0, (x>=0)
1
ответ
Для решения этой задачи необходимо найти точки пересечения линий и границы области интегрирования.
Система уравнений x+y=2 и y=x^2 имеет единственное решение (1,1).
Таким образом, границы интегрирования будут следующими:
x от 0 до 1, y от x^2 до 2-x.
Используя эти границы, мы можем записать двойной интеграл для вычисления площади:
S = ∫(x=0 до 1)∫(y=x^2 до 2-x) dy dx
Вычислим первый интеграл:
∫(y=x^2 до 2-x) dy = (2-x) - x^2
Подставим его во второй интеграл:
S = ∫(x=0 до 1) [(2-x) - x^2] dx
Вычислим второй интеграл:
∫(x=0 до 1) [(2-x) - x^2] dx = (2/3) - (1/4) - (1/3) = 5/12
Таким образом, площадь фигуры ограниченной линиями x+y=2, y=x^2, x=0, (x>=0) равна 5/12.
Система уравнений x+y=2 и y=x^2 имеет единственное решение (1,1).
Таким образом, границы интегрирования будут следующими:
x от 0 до 1, y от x^2 до 2-x.
Используя эти границы, мы можем записать двойной интеграл для вычисления площади:
S = ∫(x=0 до 1)∫(y=x^2 до 2-x) dy dx
Вычислим первый интеграл:
∫(y=x^2 до 2-x) dy = (2-x) - x^2
Подставим его во второй интеграл:
S = ∫(x=0 до 1) [(2-x) - x^2] dx
Вычислим второй интеграл:
∫(x=0 до 1) [(2-x) - x^2] dx = (2/3) - (1/4) - (1/3) = 5/12
Таким образом, площадь фигуры ограниченной линиями x+y=2, y=x^2, x=0, (x>=0) равна 5/12.
0
·
Хороший ответ
30 мая 2023 16:57
Остались вопросы?
Еще вопросы по категории Математика
1. Что такое перегрузка, при каких условиях возникает перегрузка, с точки зрения механического движения? Чем характеризуется? ...
Диаметр циферблата Кремлевских курантов 6,12 м,длина минутной стрелки 3,27 м.Найдите плошадь циферблата.Какой путь проходит конец минутной стрелки кур...
Чему равна сумма всех сторон любого треугольника...
Известно что синус альфа равен -5/13 и 3п/2<альфа<2п. Найти тангенс альфа...
Что такое квадратный сантиметр, квадратный метр?...