Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
30 мая 2023 16:54
356
высшая математика найти площадь фигуры ограниченной линиями x+y=2, y=x^2, x=0, (x>=0)
1
ответ
Для решения этой задачи необходимо найти точки пересечения линий и границы области интегрирования.
Система уравнений x+y=2 и y=x^2 имеет единственное решение (1,1).
Таким образом, границы интегрирования будут следующими:
x от 0 до 1, y от x^2 до 2-x.
Используя эти границы, мы можем записать двойной интеграл для вычисления площади:
S = ∫(x=0 до 1)∫(y=x^2 до 2-x) dy dx
Вычислим первый интеграл:
∫(y=x^2 до 2-x) dy = (2-x) - x^2
Подставим его во второй интеграл:
S = ∫(x=0 до 1) [(2-x) - x^2] dx
Вычислим второй интеграл:
∫(x=0 до 1) [(2-x) - x^2] dx = (2/3) - (1/4) - (1/3) = 5/12
Таким образом, площадь фигуры ограниченной линиями x+y=2, y=x^2, x=0, (x>=0) равна 5/12.
Система уравнений x+y=2 и y=x^2 имеет единственное решение (1,1).
Таким образом, границы интегрирования будут следующими:
x от 0 до 1, y от x^2 до 2-x.
Используя эти границы, мы можем записать двойной интеграл для вычисления площади:
S = ∫(x=0 до 1)∫(y=x^2 до 2-x) dy dx
Вычислим первый интеграл:
∫(y=x^2 до 2-x) dy = (2-x) - x^2
Подставим его во второй интеграл:
S = ∫(x=0 до 1) [(2-x) - x^2] dx
Вычислим второй интеграл:
∫(x=0 до 1) [(2-x) - x^2] dx = (2/3) - (1/4) - (1/3) = 5/12
Таким образом, площадь фигуры ограниченной линиями x+y=2, y=x^2, x=0, (x>=0) равна 5/12.
0
·
Хороший ответ
30 мая 2023 16:57
Остались вопросы?
Еще вопросы по категории Математика
Какую дробь получим, если разделим единицу на корень из 3?...
Какие преимущества есть у людей, которые живут в здоровой семье?...
Найдите значение к,если -к равно -3,5;6,8;-3/4;0;-7 1/3...
Как перевести 0.5 м3 в литры?...
1)В ДАВС <C=90°, <A: <B=4:5. Найдите а) <А,<B б) внешний угол при вершине А. 2) Докажите, что в равнобедренном треугольнике, высоты...