Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1700 б
- arkasha_bortnikov 890 б
- Dwayne_Johnson 860 б
середины сторон треугольника ABC имеют координаты М(3;-2;5) ; N(3, 5;-1;6) ;K(-1, 5;1;2) a) найдите координаты вершин треугольника ABC б) найдите координаты точки пересечения медиан треугольника ABC умоляю помогите, я буду вам очень благодарна, пожалуйста, можно подробнее
1
ответ
Для решения этой задачи мы воспользуемся формулами для нахождения координат вершин треугольника по координатам его середин.
а) Найдем координаты вершины A. Для этого найдем середину отрезка MN:
x = (3+3)/2 = 3, y = (-2+5)/2 = 1.5, z = (5-1)/2 = 3
Таким образом, координаты точки M равны (3;1.5;3). Аналогично находим середину отрезка MK:
x = (3-1)/2 = 1, y = (5+5)/2 = 5, z = (1+2)/2 = 1.5
Координаты точки K равны (-1;5;1.5). И, наконец, находим середину отрезка NK:
x = (-1+3)/2 = 1, y = (5-2)/2 = 1.5, z = (1+6)/2 = 3.5
Координаты точки N равны (1;1.5;3.5). Теперь мы можем найти координаты вершины A, используя формулу:
A = 2M - N - K
x = 2*3 - 1 - (-1) = 7, y = 2*1.5 - 5 - 5 = -3, z = 2*3 - 1.5 - 1 = 3.5
Таким образом, координаты вершины A равны (7;-3;3.5). Аналогично находим координаты вершин B и C:
B = 2N - M - K = (2*1-3+1; 2*1.5-(-2)-5; 2*3-(-1)-1.5) = (-1;8;7.5)
C = 2K - M - N = (2*(-1)-3+1; 2*5-(-2)-1.5; 2*1-5-3.5) = (-5;12.5;-7)
б) Найдем координаты точки пересечения медиан треугольника ABC. Для этого найдем координаты точек пересечения медиан соответствующих сторон треугольника. Медианы делят каждую сторону треугольника пополам.
Медиана, исходящая из вершины A, делит сторону BC пополам и проходит через точку D. Найдем координаты точки D:
x = (B_x + C_x)/2 = (-1-5)/2 = -3, y = (B_y + C_y)/2 = (8+12.5)/2 = 10.25, z = (B_z + C_z)/2 = (7.5-7)/2 = 0.25
Таким образом, координаты точки D равны (-3;10.25;0.25). Аналогично находим координаты точек E и F:
E = (A_x + C_x)/2 = (7-5)/2 = 1, (A_y + C_y)/2 = (-3+12.5)/2 = 4.75, (A_z + C_z)/2 = (3.5-7)/2 = -1.75
F = (A_x + B_x)/2 = (7-1)/2 = 3, (A_y + B_y)/2 = (-3+8)/2 = 2.5, (A_z + B_z)/2 = (3.5+7.5)/2 = 5.5
Наконец, найдем координаты точки пересечения медиан точкой G, которая является центром тяжести треугольника:
x = (D_x + E_x + F_x)/3 = (-3+1+3)/3 = 0.33, y = (D_y + E_y + F_y)/3 = (10.25+4.75+2.5)/3 = 5.17, z = (D_z + E_z + F_z)/3 = (0.25-1.75+5.5)/3 = 1
Таким образом, координаты точки пересечения медиан равны (0.33;5.17;1).
а) Найдем координаты вершины A. Для этого найдем середину отрезка MN:
x = (3+3)/2 = 3, y = (-2+5)/2 = 1.5, z = (5-1)/2 = 3
Таким образом, координаты точки M равны (3;1.5;3). Аналогично находим середину отрезка MK:
x = (3-1)/2 = 1, y = (5+5)/2 = 5, z = (1+2)/2 = 1.5
Координаты точки K равны (-1;5;1.5). И, наконец, находим середину отрезка NK:
x = (-1+3)/2 = 1, y = (5-2)/2 = 1.5, z = (1+6)/2 = 3.5
Координаты точки N равны (1;1.5;3.5). Теперь мы можем найти координаты вершины A, используя формулу:
A = 2M - N - K
x = 2*3 - 1 - (-1) = 7, y = 2*1.5 - 5 - 5 = -3, z = 2*3 - 1.5 - 1 = 3.5
Таким образом, координаты вершины A равны (7;-3;3.5). Аналогично находим координаты вершин B и C:
B = 2N - M - K = (2*1-3+1; 2*1.5-(-2)-5; 2*3-(-1)-1.5) = (-1;8;7.5)
C = 2K - M - N = (2*(-1)-3+1; 2*5-(-2)-1.5; 2*1-5-3.5) = (-5;12.5;-7)
б) Найдем координаты точки пересечения медиан треугольника ABC. Для этого найдем координаты точек пересечения медиан соответствующих сторон треугольника. Медианы делят каждую сторону треугольника пополам.
Медиана, исходящая из вершины A, делит сторону BC пополам и проходит через точку D. Найдем координаты точки D:
x = (B_x + C_x)/2 = (-1-5)/2 = -3, y = (B_y + C_y)/2 = (8+12.5)/2 = 10.25, z = (B_z + C_z)/2 = (7.5-7)/2 = 0.25
Таким образом, координаты точки D равны (-3;10.25;0.25). Аналогично находим координаты точек E и F:
E = (A_x + C_x)/2 = (7-5)/2 = 1, (A_y + C_y)/2 = (-3+12.5)/2 = 4.75, (A_z + C_z)/2 = (3.5-7)/2 = -1.75
F = (A_x + B_x)/2 = (7-1)/2 = 3, (A_y + B_y)/2 = (-3+8)/2 = 2.5, (A_z + B_z)/2 = (3.5+7.5)/2 = 5.5
Наконец, найдем координаты точки пересечения медиан точкой G, которая является центром тяжести треугольника:
x = (D_x + E_x + F_x)/3 = (-3+1+3)/3 = 0.33, y = (D_y + E_y + F_y)/3 = (10.25+4.75+2.5)/3 = 5.17, z = (D_z + E_z + F_z)/3 = (0.25-1.75+5.5)/3 = 1
Таким образом, координаты точки пересечения медиан равны (0.33;5.17;1).
0
·
Хороший ответ
2 июня 2023 10:10
Остались вопросы?
Еще вопросы по категории Геометрия
сформулировать определение средней линии трапеции. Докозать свойство средней линии трапеции. помогите ссрочно плиз...
основанием пирамиды MABCD является квадрат ABCD, ребро MD перпендикулярно к плоскости основания, AD=DM=a. найдите площадь поверхности пирамиды...
Найдите тангенс угла С треугольника АВС. Изображенного на рисунке...
Если один из углов ромба равен 90 градусов,то такой ромб-квадрат.верно ли это утверждение?...
Высота конуса равна 10 см. Найдите площадь сечения, проходящего через вершину конуса и хорду основания, стягивающую дугу в 60 градусов, если плоскость...
Все предметы