Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 865 б
На двух коаксиальных бесконечных цилиндрах радиусами R и 2R равномерно распределены заряды с поверхностными плотностями s1 и s2 (см. рис.). Требуется: 1)используя теорему Остроградского- Гаусса, найти зависимость Е(r) напряженности электрического поля от расстояния для трех областей: I, II, III. Принять s1=-s, s2=4s; 2)вычислить напряженность Е в точке, удаленной от оси цилиндров на расстояние r, и указать направление вектора Е. Принять s=30нКл/м2, r=4R; 3)построить график Е(r).
1
ответ

1) Рассмотрим три области: I - внутри цилиндра радиуса R, II - между цилиндрами радиусов R и 2R, III - вне цилиндра радиуса 2R. Для каждой области применим теорему Остроградского-Гаусса:
- I: выберем в качестве замкнутой поверхности сферу радиуса r∮E*dS = 4πr^2*E = Q1/ε0,
E = s1/(4πε0*r), r- II: выберем в качестве замкнутой поверхности цилиндр радиуса r и высоты h (h - расстояние между цилиндрами). Так как заряд на поверхности цилиндра радиуса R равномерно распределен, а на поверхности цилиндра радиуса 2R заряд равномерно распределен в 4 раза больше, то заряд внутри цилиндра радиуса r будет равен Q2 = s1 * S2, а заряд внутри цилиндра радиуса 2r будет равен Q3 = s2 * S3, где S2 и S3 - площади оснований цилиндров радиусов R и 2R соответственно. Тогда по теореме Остроградского-Гаусса:
∮E*dS = 2πrh*E + 2πr^2*E = (Q2 + Q3)/ε0,
E = (s1 + 2s2)/(2πε0*r), R- III: выберем в качестве замкнутой поверхности сферу радиуса r>2R. Так как заряд на поверхности цилиндра радиуса 2R равномерно распределен, то заряд вне сферы будет равен Q4 = -s2 * S4, где S4 - площадь основания цилиндра радиуса 2R. Тогда по теореме Остроградского-Гаусса:
∮E*dS = 4πr^2*E = Q4/ε0,
E = -s2/(4πε0*r), r>2R.
2) Подставим s=30нКл/м2 и r=4R в формулу для E в области II:
E = (s1 + 2s2)/(2πε0*r) = (30*10^-9 + 2*4*30*10^-9)/(2π*8.85*10^-12*4R) = 0.64*10^4 В/м.
Направление вектора E радиальное и направлено от цилиндров.
3) Построим график E(r) для r от 0 до 3R (так как E=0 в точке r=2R):

1) Рассмотрим три области: I - внутри цилиндра радиуса R, II - между цилиндрами радиусов R и 2R, III - вне цилиндра радиуса 2R. Для каждой области применим теорему Остроградского-Гаусса:
- I: выберем в качестве замкнутой поверхности сферу радиуса r
E = s1/(4πε0*r), r
∮E*dS = 2πrh*E + 2πr^2*E = (Q2 + Q3)/ε0,
E = (s1 + 2s2)/(2πε0*r), R
∮E*dS = 4πr^2*E = Q4/ε0,
E = -s2/(4πε0*r), r>2R.
2) Подставим s=30нКл/м2 и r=4R в формулу для E в области II:
E = (s1 + 2s2)/(2πε0*r) = (30*10^-9 + 2*4*30*10^-9)/(2π*8.85*10^-12*4R) = 0.64*10^4 В/м.
Направление вектора E радиальное и направлено от цилиндров.
3) Построим график E(r) для r от 0 до 3R (так как E=0 в точке r=2R):

0
·
Хороший ответ
2 июня 2023 13:51
Остались вопросы?
Еще вопросы по категории Физика
Радиостанция работает на частоте 60 МГц. Найдите длину электромагнитных волн, излучаемых антенной радиостанции. Скорость распространения электромагни...
Напряженность однородного электрического поля, создаваемого двумя вертикальными параллельными обкладками плоского воздушного конденсатора, расположенн...
У поверхности Земли на космонавта действует гравитационная сила 720Н. Какая гравитационная сила действует со стороны Земли на того же космонавта в кос...
Период колебаний зарядов в антенне, излучающей радиоволны, равен 10 в -7с степени. Определите частоту этих радиоволн....
Рабочий с помощью подвижного блока поднял груз на высоту 7 м, прилагая к свободному концу верёвки силу 160Н. Какую работу он совершил?? Пожалуйста не...