Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1700 б
- arkasha_bortnikov 890 б
- Dwayne_Johnson 860 б
19 июня 2023 04:45
482
Образующая конуса равна 17 радиус основания 8
Можно подробное решение полностью
1
ответ
Для решения данной задачи нам нужно использовать формулу для объема конуса:
V = (1/3) * π * r^2 * h,
где V - объем конуса, r - радиус основания конуса, h - высота конуса.
Нам даны образующая конуса и радиус основания, но нам необходимо найти высоту конуса, чтобы решить задачу.
Для этого мы можем использовать теорему Пифагора для правильной треугольной трапеции, образованной образующей, радиусом основания и высотой конуса:
h^2 = l^2 - r^2,
где l - длина образующей конуса.
Найдем длину образующей, используя теорему Пифагора для прямоугольного треугольника, образованного образующей, радиусом основания и половиной образующей:
l^2 = r^2 + (1/2 * l)^2
l^2 = r^2 + (l^2/4)
(3/4) * l^2 = r^2
l^2 = (4/3) * r^2
l = sqrt((4/3) * r^2)
Теперь мы можем найти высоту конуса, используя теорему Пифагора:
h^2 = l^2 - r^2
h^2 = (4/3) * r^2 - r^2
h^2 = (1/3) * r^2
h = sqrt((1/3) * r^2)
Теперь, когда мы знаем высоту конуса, мы можем найти его объем, подставив известные значения в формулу:
V = (1/3) * π * r^2 * h
V = (1/3) * π * 8^2 * sqrt((1/3) * 8^2)
V = (1/3) * π * 64 * sqrt(64/27)
V = (1/3) * π * 64 * (8/3)
V = 672π/9
V = 224π/3
Ответ: объем конуса равен 224π/3.
V = (1/3) * π * r^2 * h,
где V - объем конуса, r - радиус основания конуса, h - высота конуса.
Нам даны образующая конуса и радиус основания, но нам необходимо найти высоту конуса, чтобы решить задачу.
Для этого мы можем использовать теорему Пифагора для правильной треугольной трапеции, образованной образующей, радиусом основания и высотой конуса:
h^2 = l^2 - r^2,
где l - длина образующей конуса.
Найдем длину образующей, используя теорему Пифагора для прямоугольного треугольника, образованного образующей, радиусом основания и половиной образующей:
l^2 = r^2 + (1/2 * l)^2
l^2 = r^2 + (l^2/4)
(3/4) * l^2 = r^2
l^2 = (4/3) * r^2
l = sqrt((4/3) * r^2)
Теперь мы можем найти высоту конуса, используя теорему Пифагора:
h^2 = l^2 - r^2
h^2 = (4/3) * r^2 - r^2
h^2 = (1/3) * r^2
h = sqrt((1/3) * r^2)
Теперь, когда мы знаем высоту конуса, мы можем найти его объем, подставив известные значения в формулу:
V = (1/3) * π * r^2 * h
V = (1/3) * π * 8^2 * sqrt((1/3) * 8^2)
V = (1/3) * π * 64 * sqrt(64/27)
V = (1/3) * π * 64 * (8/3)
V = 672π/9
V = 224π/3
Ответ: объем конуса равен 224π/3.
0
·
Хороший ответ
19 июня 2023 04:48
Остались вопросы?
Еще вопросы по категории Математика
Тело совершает свободные колебания вдоль оси OX. Его координата изменяется по закону x = -2 sin 3t (м). Определить ускор...
Какая часть квадрата закрашена? - запишите обыкновенную дробь и десятичную дробь. Сделайте срочно, пожалуйста....
Какой предлог употребляется с глаголом 'думать'?...
Какая сила действует на тело массой 10 грамм?...
Какая масса соответствует 10 тоннам в килограммах?...
Все предметы