Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1700 б
- arkasha_bortnikov 890 б
- Dwayne_Johnson 860 б
концы отрезка, длина которого равна 25 см, принадлежат двум перпендикулярным плоскостям, а расстояния от концов отрезка до линии пересечения плоскостей равны 20 см и 9 см. Найдите расстояние между основаниями перпендикуляров, проведенных с концов отрезка до линии пересечения плоскостей.
1
ответ
Рассмотрим схему:
![image.png](attachment:image.png)
Пусть $AB$ — исходный отрезок длины $25$ см, $CD$ — линия пересечения плоскостей, $P$ и $Q$ — основания перпендикуляров, опущенных из концов отрезка на линию пересечения плоскостей.
Так как $P$ и $Q$ лежат на одной прямой, то $PQ$ — кратчайшее расстояние между $AB$ и $CD$. Обозначим его через $h$.
Треугольник $APC$ является прямоугольным, поэтому по теореме Пифагора:
$AC^2 = AP^2 + PC^2$
$AC^2 = 20^2 + h^2$
Аналогично, треугольник $BQD$ является прямоугольным, поэтому:
$BD^2 = BQ^2 + QD^2$
$BD^2 = 9^2 + h^2$
Так как $AC = BD$, то можно записать:
$20^2 + h^2 = 9^2 + h^2$
$20^2 = 9^2$
$h^2 = 20^2 - 9^2 = 311$
$h = \sqrt{311}$ см.
Таким образом, расстояние между основаниями перпендикуляров равно $\sqrt{311}$ см.
![image.png](attachment:image.png)
Пусть $AB$ — исходный отрезок длины $25$ см, $CD$ — линия пересечения плоскостей, $P$ и $Q$ — основания перпендикуляров, опущенных из концов отрезка на линию пересечения плоскостей.
Так как $P$ и $Q$ лежат на одной прямой, то $PQ$ — кратчайшее расстояние между $AB$ и $CD$. Обозначим его через $h$.
Треугольник $APC$ является прямоугольным, поэтому по теореме Пифагора:
$AC^2 = AP^2 + PC^2$
$AC^2 = 20^2 + h^2$
Аналогично, треугольник $BQD$ является прямоугольным, поэтому:
$BD^2 = BQ^2 + QD^2$
$BD^2 = 9^2 + h^2$
Так как $AC = BD$, то можно записать:
$20^2 + h^2 = 9^2 + h^2$
$20^2 = 9^2$
$h^2 = 20^2 - 9^2 = 311$
$h = \sqrt{311}$ см.
Таким образом, расстояние между основаниями перпендикуляров равно $\sqrt{311}$ см.
0
·
Хороший ответ
21 июня 2023 19:12
Остались вопросы?
Еще вопросы по категории Геометрия
Дан треугольник АВС. Плоскость, пересекая стороны АС и ВС треугольника АВС соответственно в точках А 1 и В 1 , делит их в отношении АА 1 :А 1 С= ВВ...
Радиус описанной около равностороннего треугольника окружности равен 8см. Найдите периметр этого треугольника и радиус вписанной окружности. ВСЁ ПОДРО...
диагонали ac и bd трапеции abcd с основаниями bc и ad пересекаются в точке O bc=9 ad=15 ac=40 найти ao...
Найдите площадь полной поверхности прямоугольного параллепипеда,если сторона его основания равна 4см,площадь основания -24см в квадрате ,а объем-168см...
Большая боковая сторона прямоугольной трапеции равна 12√2 см, а острый угол - 45°, найдите площадь трапеции, если известно, что в трапецию можно вписа...
Все предметы