Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
Для решения данной задачи, нам понадобится использовать свойства окружностей и треугольников.
Первым шагом найдем радиусы описанной и вписанной окружностей треугольника АВС.
Радиус описанной окружности (О) равен половине диагонали АС:
РО = (АС) / 2 = (17 + 16) / 2 = 33 / 2 = 16.5
Радиус вписанной окружности (О') можно найти используя формулу:
РО' = Периметр треугольника / 2 * Полупериметр треугольника
Периметр треугольника АВС равен сумме длин сторон:
Периметр = АВ + ВС + АС = 17 + 16 + 33 = 66
Полупериметр треугольника равен половине периметра:
Полупериметр = Периметр / 2 = 66 / 2 = 33
Теперь можем найти радиус вписанной окружности:
РО' = 66 / 2 * 33 = 33
Используя радиусы описанной и вписанной окружностей, мы можем найти площадь треугольника АВС по формуле:
Площадь = Периметр * РО' / 2 = 66 * 33 / 2 = 1089
Таким образом, площадь треугольника АВС равна 1089.
Первым шагом найдем радиусы описанной и вписанной окружностей треугольника АВС.
Радиус описанной окружности (О) равен половине диагонали АС:
РО = (АС) / 2 = (17 + 16) / 2 = 33 / 2 = 16.5
Радиус вписанной окружности (О') можно найти используя формулу:
РО' = Периметр треугольника / 2 * Полупериметр треугольника
Периметр треугольника АВС равен сумме длин сторон:
Периметр = АВ + ВС + АС = 17 + 16 + 33 = 66
Полупериметр треугольника равен половине периметра:
Полупериметр = Периметр / 2 = 66 / 2 = 33
Теперь можем найти радиус вписанной окружности:
РО' = 66 / 2 * 33 = 33
Используя радиусы описанной и вписанной окружностей, мы можем найти площадь треугольника АВС по формуле:
Площадь = Периметр * РО' / 2 = 66 * 33 / 2 = 1089
Таким образом, площадь треугольника АВС равна 1089.
0
·
Хороший ответ
13 сентября 2023 18:42
Остались вопросы?
Еще вопросы по категории Геометрия
В прямоугольной трапеции ABCD большая боковая сторона равна 10 корень 2 см, а острый угол равен 45° и высота СН делит основание AD пополам. Найдите пл...
Основание прямой призмы-прямоугольный треугольник с катетами 6 и 8 см объем 240. найти площадь полной поверхности призмы...
В Кубе ABCDA1B1C1D1 найдите угол между прямыми BA1 и AC. Ответ дайте в градусах....
Дан треугольник BCE. Плоскость, параллельная прямой CE, пересекает BE в точке E1, а BC в точке C1. Найдите BC1, если C1 и E1 : CE = 3 : 8, BC = 28см р...
Подскажите пожалуйста!!! как называют фигуру образованную двумя лучами с общим началом и одной из частей на которые эти лучи делят плоскость , как при...