Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
Для решения данной задачи, нам понадобится использовать свойства окружностей и треугольников.
Первым шагом найдем радиусы описанной и вписанной окружностей треугольника АВС.
Радиус описанной окружности (О) равен половине диагонали АС:
РО = (АС) / 2 = (17 + 16) / 2 = 33 / 2 = 16.5
Радиус вписанной окружности (О') можно найти используя формулу:
РО' = Периметр треугольника / 2 * Полупериметр треугольника
Периметр треугольника АВС равен сумме длин сторон:
Периметр = АВ + ВС + АС = 17 + 16 + 33 = 66
Полупериметр треугольника равен половине периметра:
Полупериметр = Периметр / 2 = 66 / 2 = 33
Теперь можем найти радиус вписанной окружности:
РО' = 66 / 2 * 33 = 33
Используя радиусы описанной и вписанной окружностей, мы можем найти площадь треугольника АВС по формуле:
Площадь = Периметр * РО' / 2 = 66 * 33 / 2 = 1089
Таким образом, площадь треугольника АВС равна 1089.
Первым шагом найдем радиусы описанной и вписанной окружностей треугольника АВС.
Радиус описанной окружности (О) равен половине диагонали АС:
РО = (АС) / 2 = (17 + 16) / 2 = 33 / 2 = 16.5
Радиус вписанной окружности (О') можно найти используя формулу:
РО' = Периметр треугольника / 2 * Полупериметр треугольника
Периметр треугольника АВС равен сумме длин сторон:
Периметр = АВ + ВС + АС = 17 + 16 + 33 = 66
Полупериметр треугольника равен половине периметра:
Полупериметр = Периметр / 2 = 66 / 2 = 33
Теперь можем найти радиус вписанной окружности:
РО' = 66 / 2 * 33 = 33
Используя радиусы описанной и вписанной окружностей, мы можем найти площадь треугольника АВС по формуле:
Площадь = Периметр * РО' / 2 = 66 * 33 / 2 = 1089
Таким образом, площадь треугольника АВС равна 1089.
0
·
Хороший ответ
13 сентября 2023 18:42
Остались вопросы?
Еще вопросы по категории Геометрия
Дан ромб ABCD с диагоналями AC=6, BD=8. Из вершины C и плоскости ромба восстановлен перпендикуляр длиной 6,4. найти расстояние от точки CM до стороны...
Проведены касательные к окружности AB, BD и DE так, что A, C и E — точки касания. Длина ломаной ABDE равна 54,3 см. Определи длину отрезка DB. Ответ...
Найти градусную меру угла ABC Пожалуйста! 90 баллов !очень нужно !...
Дана правильная треугольная призма ABCA1B1C1, AB = 12, AA1= 4√6. Точка K делит ребро A1B1 в отношении 1:2, считая от точки A1. Найдите площадь сечения...
Боковая сторона равнобедренного треугольника, основание которого равно 6, делится точкой касания вписанной в него окружности в отношении 4:3, считая о...