Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
Для решения этой задачи мы можем воспользоваться формулой для потенциала, создаваемого зарядом распределенным по объему:
V(x) = ∫ρ(x')/4πε₀|x - x'| dV',
где V(x) - потенциал в точке x, ρ(x') - объемная плотность заряда в точке x', ε₀ - электрическая постоянная.
В данной задаче пластина бесконечно большая, поэтому мы можем считать, что потенциал на бесконечности равен нулю. Также, из-за симметрии задачи, потенциал не зависит от координаты y и z.
Поэтому мы можем записать:
V(x) = ∫(a*e^(-b*x')/4πε₀|x - x'| dV',
где интегрирование производится по всей пластине.
Так как пластина имеет бесконечную площадь, мы не можем использовать обычные интегралы, но мы можем использовать интегралы Фурье. В данном случае, мы можем использовать интегралы Фурье по переменной k, которая соответствует координате x' вдоль пластины.
Таким образом, мы можем записать:
V(x) = ∫(a*e^(-b*k)/4πε₀|x - x'| dA' dk,
где интегрирование производится по всей пластине, dA' - элемент площади пластины, dk - элемент переменной k.
Для удобства, мы можем перейти к безразмерным переменным, где длина пластины будет равна 1, а постоянные a и b могут быть выражены через новые постоянные a' и b':
a' = a*L, b' = b*L,
где L - длина пластины.
Тогда мы можем записать:
V(x) = ∫(a'*e^(-b'*k)/4πε₀|x - x'| dA' dk.
Теперь мы можем произвести интегрирование по переменной k:
V(x) = ∫(a'*e^(-b'*k)/4πε₀|x - x'| dA' dk
= a'/(4πε₀) ∫(e^(-b'*k)/|x - x'| dA' dk.
Так как пластина равномерно заряжена, плотность заряда на площади равна:
σ = p*L = a*e^(-b*L)/L.
Тогда элемент площади dA' можно записать как:
dA' = L*dx,
где dx - элемент переменной x.
Тогда мы можем записать:
V(x) = a'/(4πε₀) ∫(e^(-b'*k)/|x - x'| L*dx dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k
V(x) = ∫ρ(x')/4πε₀|x - x'| dV',
где V(x) - потенциал в точке x, ρ(x') - объемная плотность заряда в точке x', ε₀ - электрическая постоянная.
В данной задаче пластина бесконечно большая, поэтому мы можем считать, что потенциал на бесконечности равен нулю. Также, из-за симметрии задачи, потенциал не зависит от координаты y и z.
Поэтому мы можем записать:
V(x) = ∫(a*e^(-b*x')/4πε₀|x - x'| dV',
где интегрирование производится по всей пластине.
Так как пластина имеет бесконечную площадь, мы не можем использовать обычные интегралы, но мы можем использовать интегралы Фурье. В данном случае, мы можем использовать интегралы Фурье по переменной k, которая соответствует координате x' вдоль пластины.
Таким образом, мы можем записать:
V(x) = ∫(a*e^(-b*k)/4πε₀|x - x'| dA' dk,
где интегрирование производится по всей пластине, dA' - элемент площади пластины, dk - элемент переменной k.
Для удобства, мы можем перейти к безразмерным переменным, где длина пластины будет равна 1, а постоянные a и b могут быть выражены через новые постоянные a' и b':
a' = a*L, b' = b*L,
где L - длина пластины.
Тогда мы можем записать:
V(x) = ∫(a'*e^(-b'*k)/4πε₀|x - x'| dA' dk.
Теперь мы можем произвести интегрирование по переменной k:
V(x) = ∫(a'*e^(-b'*k)/4πε₀|x - x'| dA' dk
= a'/(4πε₀) ∫(e^(-b'*k)/|x - x'| dA' dk.
Так как пластина равномерно заряжена, плотность заряда на площади равна:
σ = p*L = a*e^(-b*L)/L.
Тогда элемент площади dA' можно записать как:
dA' = L*dx,
где dx - элемент переменной x.
Тогда мы можем записать:
V(x) = a'/(4πε₀) ∫(e^(-b'*k)/|x - x'| L*dx dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k)/|x - x'| dx ∫e^(-b'*k) dk
= a'/(4πε₀) L ∫(e^(-b'*k
0
·
Хороший ответ
2 октября 2023 06:25
Остались вопросы?
Еще вопросы по категории Физика
СРОЧНО ПОМОГИТЕ ПОЖАЛУЙСТА Алле нужно отрезать от мотка нитку длиной 24 см. На рисунке изображены три линейки. Чему равна цена деления той линейки, ко...
На нити подвешен заряженный шар массой m зарядом q1. К нему поднесли снизу на расстояние L заряженный зарядом q2 шар радиусом r. Определить как измени...
Почему спектр излучения в газообразном состоянии при высокой температуре и низком давлении состоит из отдельных цветных линий?...
Примеры на давление твёрдых тел, жидкости и газы...
Измерьте линейкой с миллиметровыми делениями длину и высоту картины Леонардо да Винчи. Запишите результаты измерения с учётом погрешности. Используя и...