Лучшие помощники
- Megamozg 2180 б
- Matalya1 1800 б
- DevAdmin 1690 б
- arkasha_bortnikov 840 б
- Dwayne_Johnson 840 б
Для нахождения вероятности нахождения частицы в заданной области необходимо найти квадрат модуля волновой функции в этой области и проинтегрировать его по всему пространству.
В данном случае, волновая функция частицы будет иметь вид:
ψ(x, y) = A*sin(π*x/L1)*sin(π*y/L2)
где A - нормировочная константа, L1 и L2 - размеры прямоугольной области.
Для нормировки волновой функции, необходимо найти значение константы A:
∫∫|ψ(x, y)|^2 dx dy = 1
Интегрируя по всей области, получим:
∫(0→L1)∫(0→L2) A^2*sin^2(π*x/L1)*sin^2(π*y/L2) dx dy = 1
Для упрощения вычислений, можно заметить, что функция ψ(x, y) является произведением двух функций, зависящих только от одной переменной:
ψ(x, y) = ψ(x)ψ(y), где ψ(x) = A*sin(π*x/L1) и ψ(y) = sin(π*y/L2)
Таким образом, можно разделить интеграл на два отдельных интеграла:
∫(0→L1)∫(0→L2) |ψ(x)|^2 |ψ(y)|^2 dx dy = ∫(0→L1) |ψ(x)|^2 dx * ∫(0→L2) |ψ(y)|^2 dy
Рассмотрим первый интеграл:
∫(0→L1) |ψ(x)|^2 dx = A^2 * ∫(0→L1) sin^2(π*x/L1) dx
Используя формулу для интеграла sin^2(x) = (1/2) - (1/2)*cos(2x), получим:
∫(0→L1) |ψ(x)|^2 dx = A^2 * [x/2 - (L1/(4π))*sin(2π*x/L1)](0→L1)
∫(0→L1) |ψ(x)|^2 dx = A^2 * [L1/2 - (L1/(4π))*sin(2π)]
Аналогично, для второго интеграла:
∫(0→L2) |ψ(y)|^2 dy = [L2/2 - (L2/(4π))*sin(2π)]
Теперь, подставляем значения интегралов в уравнение для нормировки:
A^2 * [L1/2 - (L1/(4π))*sin(2π)] * [L2/2 - (L2/(4π))*sin(2π)] = 1
Выражая A^2:
A^2 = 1 / [L1*L2 - (L1*L2/(4π))*sin(2π)]
Теперь, чтобы найти вероятность нахождения частицы в области 0P = ∫(0→L1/3)∫(0→L2) |ψ(x, y)|^2 dx dy
Разделяя интеграл на два отдельных интеграла:
P = ∫(0→L1/3) |ψ(x)|^2 dx * ∫(0→L2) |ψ(y)|^2 dy
Подставляем значения интегралов и константы A^2:
P = [L1/6 - (L1/(12π))*sin(2π)] * [L2/2 - (L2/(4π))*sin(2π)] / [L1*L2 - (L1*L2/(4π))*sin(2π)]
Таким образом, вероятность нахождения частицы в области 0P = [L1/6 - (L1/(12π))*sin(2π)] * [L2/2 - (L2/(4π))*sin(2π)] / [L1*L2 - (L1*L2/(4π))*sin(2π)]
В данном случае, волновая функция частицы будет иметь вид:
ψ(x, y) = A*sin(π*x/L1)*sin(π*y/L2)
где A - нормировочная константа, L1 и L2 - размеры прямоугольной области.
Для нормировки волновой функции, необходимо найти значение константы A:
∫∫|ψ(x, y)|^2 dx dy = 1
Интегрируя по всей области, получим:
∫(0→L1)∫(0→L2) A^2*sin^2(π*x/L1)*sin^2(π*y/L2) dx dy = 1
Для упрощения вычислений, можно заметить, что функция ψ(x, y) является произведением двух функций, зависящих только от одной переменной:
ψ(x, y) = ψ(x)ψ(y), где ψ(x) = A*sin(π*x/L1) и ψ(y) = sin(π*y/L2)
Таким образом, можно разделить интеграл на два отдельных интеграла:
∫(0→L1)∫(0→L2) |ψ(x)|^2 |ψ(y)|^2 dx dy = ∫(0→L1) |ψ(x)|^2 dx * ∫(0→L2) |ψ(y)|^2 dy
Рассмотрим первый интеграл:
∫(0→L1) |ψ(x)|^2 dx = A^2 * ∫(0→L1) sin^2(π*x/L1) dx
Используя формулу для интеграла sin^2(x) = (1/2) - (1/2)*cos(2x), получим:
∫(0→L1) |ψ(x)|^2 dx = A^2 * [x/2 - (L1/(4π))*sin(2π*x/L1)](0→L1)
∫(0→L1) |ψ(x)|^2 dx = A^2 * [L1/2 - (L1/(4π))*sin(2π)]
Аналогично, для второго интеграла:
∫(0→L2) |ψ(y)|^2 dy = [L2/2 - (L2/(4π))*sin(2π)]
Теперь, подставляем значения интегралов в уравнение для нормировки:
A^2 * [L1/2 - (L1/(4π))*sin(2π)] * [L2/2 - (L2/(4π))*sin(2π)] = 1
Выражая A^2:
A^2 = 1 / [L1*L2 - (L1*L2/(4π))*sin(2π)]
Теперь, чтобы найти вероятность нахождения частицы в области 0
Разделяя интеграл на два отдельных интеграла:
P = ∫(0→L1/3) |ψ(x)|^2 dx * ∫(0→L2) |ψ(y)|^2 dy
Подставляем значения интегралов и константы A^2:
P = [L1/6 - (L1/(12π))*sin(2π)] * [L2/2 - (L2/(4π))*sin(2π)] / [L1*L2 - (L1*L2/(4π))*sin(2π)]
Таким образом, вероятность нахождения частицы в области 0
0
·
Хороший ответ
1 ноября 2023 10:30
Остались вопросы?
Еще вопросы по категории Физика
В одном сосуде находится чугунный кубик, в другом — молоко. На рисунках стрелками показано, как эти вещества будут передавать производимое на них давл...
Найти Uс(t), если в t=0 замкнули ключ...
Нарисуйте несколько магнитных линий полосового магнита...
Ящик тянут по земле за веревку по горизонтальной окружности длиной L = 40 м с постоянной по модулю скоростью. Работа силы тяги за один оборот по окруж...
Лабораторная работа. Измерение температуры остывающей воды. Всего 1 задание и вывод :з там легко, но я не поняла как делать. Во вложениях 2 странички,...
Все предметы