Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1705 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 860 б
To simplify the expression sin(7π/12) - sin(π/12), we can use the trigonometric identity:
sin(A - B) = sin(A)cos(B) - cos(A)sin(B)
Let's use this identity to simplify the expression:
sin(7π/12) - sin(π/12) = sin(6π/12 + π/12) - sin(π/12)
= sin(π/2)cos(π/12) - cos(π/2)sin(π/12)
= 1 * (√3/2) - 0 * (1/2)
= √3/2
Therefore, sin(7π/12) - sin(π/12) simplifies to √3/2.
sin(A - B) = sin(A)cos(B) - cos(A)sin(B)
Let's use this identity to simplify the expression:
sin(7π/12) - sin(π/12) = sin(6π/12 + π/12) - sin(π/12)
= sin(π/2)cos(π/12) - cos(π/2)sin(π/12)
= 1 * (√3/2) - 0 * (1/2)
= √3/2
Therefore, sin(7π/12) - sin(π/12) simplifies to √3/2.
0
·
Хороший ответ
7 февраля 2024 10:51
Остались вопросы?
Еще вопросы по категории Математика
Все предметы