Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
Для решения этой задачи, давайте обозначим расстояние между основаниями наклонных за \(x\). Также обозначим расстояние от точки до плоскости за \(h = 5\) см, а длины наклонных за \(a = b = 13\) см.
Мы знаем, что угол между проекциями наклонных на плоскость равен 60°. Это значит, что угол между наклонными равен 60°.
Теперь мы можем использовать теорему косинусов для треугольника, образованного точкой, основаниями наклонных и их пересечением.
\[x^2 = a^2 + b^2 - 2ab\cos(60°)\]
\[x^2 = 13^2 + 13^2 - 2 \cdot 13 \cdot 13 \cdot \cos(60°)\]
\[x^2 = 338 - 169\]
\[x^2 = 169\]
\[x = \sqrt{169}\]
\[x = 13\]
Таким образом, расстояние между основаниями наклонных равно 13 см.
Мы знаем, что угол между проекциями наклонных на плоскость равен 60°. Это значит, что угол между наклонными равен 60°.
Теперь мы можем использовать теорему косинусов для треугольника, образованного точкой, основаниями наклонных и их пересечением.
\[x^2 = a^2 + b^2 - 2ab\cos(60°)\]
\[x^2 = 13^2 + 13^2 - 2 \cdot 13 \cdot 13 \cdot \cos(60°)\]
\[x^2 = 338 - 169\]
\[x^2 = 169\]
\[x = \sqrt{169}\]
\[x = 13\]
Таким образом, расстояние между основаниями наклонных равно 13 см.
0
·
Хороший ответ
4 марта 2024 11:30
Остались вопросы?
Еще вопросы по категории Геометрия
С помощью теоремы синусов и косинусов решите треугольник ABC, ЕСЛИ a=14, b=18, c=20. Помогите!...
Найдите тангенс угла aob размер клетки 1...
Верно ли, что точка точка A(8;-8) принадлежит окружности ( x −2)^2 +( y +2)^2 =100 ?...
Диагонали прямоугольника пересекаются под углом 120. Сумма диагонали и меньшей стороны равна 36. Найдите диагональ прямоугольника...
Докажите что , если медиана треугольника равна половине стороны , к которой она проведена , то треугольник прямоугольный....