Лучшие помощники
- Megamozg 2200 б
- Matalya1 1800 б
- DevAdmin 1700 б
- arkasha_bortnikov 890 б
- Dwayne_Johnson 860 б
Для начала обратим внимание на свойство равнобедренного треугольника: биссектриса угла при основании равнобедренного треугольника является высотой и медианой этого треугольника.
Таким образом, мы знаем, что точка E является серединой стороны AC. Теперь обратим внимание на треугольник ACD. Так как CE является высотой этого треугольника, а CD известно, то мы можем воспользоваться теоремой Пифагора для нахождения длины отрезка AE.
По теореме Пифагора:
AC^2 = AE^2 + CE^2
Так как AB = BC, то AC = 2AB = 2BC. Пусть AB = x, тогда AC = 2x.
Также CE = AC/2 = x.
Подставим известные значения:
(2x)^2 = AE^2 + x^2
4x^2 = AE^2 + x^2
3x^2 = AE^2
Теперь найдем значение AE:
AE = √(3x^2) = x√3
Таким образом, отрезок AE равен x√3.
Таким образом, мы знаем, что точка E является серединой стороны AC. Теперь обратим внимание на треугольник ACD. Так как CE является высотой этого треугольника, а CD известно, то мы можем воспользоваться теоремой Пифагора для нахождения длины отрезка AE.
По теореме Пифагора:
AC^2 = AE^2 + CE^2
Так как AB = BC, то AC = 2AB = 2BC. Пусть AB = x, тогда AC = 2x.
Также CE = AC/2 = x.
Подставим известные значения:
(2x)^2 = AE^2 + x^2
4x^2 = AE^2 + x^2
3x^2 = AE^2
Теперь найдем значение AE:
AE = √(3x^2) = x√3
Таким образом, отрезок AE равен x√3.
0
·
Хороший ответ
20 мая 2024 20:57
Остались вопросы?
Еще вопросы по категории Геометрия
Cos=0,8 сколько єто в градусах?...
В призме ABCA1B1C1 точка М-середина ребра A1B1. Выразите вектор MB через векторы AC, BC и BB1....
Высота цилиндра равна 10 см. Площадь сечения цилиндра плоскостью, параллельной оси цилиндра и находящейся на расстоянии 6 см от нее, равна 160 см2. Вы...
Средняя линия трапеции лежит в плоскости α. Пересекают ли прямые, содержащие ее основания, плоскость α? Ответ обоснуйте....
Найти обьём цилиндра...
Все предметы