Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
3 июля 2024 12:48
338
∫dx/(cos^2(3-2x))=
1)2tg(3-2x) + C
2)2ctg(3-2x) + C
3)(1/2)ctg(3-2x) + C
4)-(1/2)tg(3-2x) + C
1
ответ
To find the antiderivative of the given function ∫dx/(cos^2(3-2x)), we can use the trigonometric identity: 1 + tan^2(x) = sec^2(x).
Let's rewrite the integral using this identity:
∫dx/(cos^2(3-2x)) = ∫sec^2(3-2x)dx
Now, we can use the chain rule to integrate this function. Let u = 3-2x, then du = -2dx.
Substitute u = 3-2x and du = -2dx into the integral:
∫sec^2(u)(-du/2) = (-1/2)∫sec^2(u)du
Integrating sec^2(u)du gives us tan(u), so the integral becomes:
(-1/2)tan(u) + C
Substitute back u = 3-2x:
(-1/2)tan(3-2x) + C
To simplify the result, recall that tan(x) = sin(x)/cos(x):
(-1/2)(sin(3-2x)/cos(3-2x)) + C
= -(1/2)(sin(3-2x)/cos(3-2x)) + C
Therefore, the antiderivative of ∫dx/(cos^2(3-2x)) is:
-(1/2)(sin(3-2x)/cos(3-2x)) + C
Let's rewrite the integral using this identity:
∫dx/(cos^2(3-2x)) = ∫sec^2(3-2x)dx
Now, we can use the chain rule to integrate this function. Let u = 3-2x, then du = -2dx.
Substitute u = 3-2x and du = -2dx into the integral:
∫sec^2(u)(-du/2) = (-1/2)∫sec^2(u)du
Integrating sec^2(u)du gives us tan(u), so the integral becomes:
(-1/2)tan(u) + C
Substitute back u = 3-2x:
(-1/2)tan(3-2x) + C
To simplify the result, recall that tan(x) = sin(x)/cos(x):
(-1/2)(sin(3-2x)/cos(3-2x)) + C
= -(1/2)(sin(3-2x)/cos(3-2x)) + C
Therefore, the antiderivative of ∫dx/(cos^2(3-2x)) is:
-(1/2)(sin(3-2x)/cos(3-2x)) + C
0
·
Хороший ответ
3 июля 2024 12:51
Остались вопросы?
Еще вопросы по категории Математика
обьем прямоугольного паралепипеда равен 75 одно из его ребер равно 5 найдите площадь грани параллелепипеда перпендикулярной этому ребру...
3 кг 26 г-1 кг 920 г=?...
Например человек ложился спать пол 12 часа (ночи) а проснулся 4 часов утра сколько часов он поспал до утра?...
Тригонометрия cos x = - 1/корень2...
Свойства натурального логарифма. Как из выражения ln(y)-0.5ln(1+y)-0.5ln(1-y)=ln(x)=ln(x)+ln(C) получить =ln(Cx)...