Лучшие помощники
24 сентября 2024 18:24
87

номер 1:В параллелограмме ABCD AB = 7cм, AD= 12см. Биссектриса угла А пересекает сторону BC в точке Е.

номер 2:На основании равнобедренного треугольника отмечена произвольная точка и через неё проведены прямые, параллельные его боковым сторонам. Найдите периметр

помогите пожалуйста.

1 ответ
Посмотреть ответы
Для решения задачи номер 1, нам нужно найти длину биссектрисы угла А и длину отрезка BE.

Из свойств параллелограмма мы знаем, что в параллелограмме противоположные стороны равны и противоположные углы равны. Таким образом, AB = CD и AD = BC.

Также, из теоремы косинусов для треугольника, мы можем найти длину биссектрисы угла A:

cos(A) = (AB^2 + AD^2 - BD^2) / (2 * AB * AD)
cos(A) = (7^2 + 12^2 - BD^2) / (2 * 7 * 12)
cos(A) = (49 + 144 - BD^2) / 168
cos(A) = (193 - BD^2) / 168

Так как угол A в параллелограмме равен углу C, то биссектриса угла A также является высотой треугольника BCE. Теперь мы можем найти длину отрезка BE:

BE = 2 * AD * cos(A)
BE = 2 * 12 * sqrt(1 - cos^2(A))

Теперь у нас есть длина отрезка BE. Если у вас есть данные о угле A, вы можете вычислить значение cos(A) и далее находить длину отрезка BE.

Чтобы решить задачу номер 2, вам нужно предоставить больше информации. Если вы можете указать дополнительные данные о треугольнике или точке, через которую проведены прямые, я смогу помочь вам с решением.
0
·
Хороший ответ
24 сентября 2024 18:27
Остались вопросы?
Найти нужный