Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
28 сентября 2024 12:09
860
Представьте, что перед вами лежит окружность некоторого радиуса. Вы наугад бросаете на эту окружность точку.
Какова вероятность того, что точка упадет не далее 1/2 радиуса от центра окружности.
При необходимости ответ округлите до сотых
1
ответ
Для решения этой задачи нам нужно определить отношение площади кругового сегмента, который находится на расстоянии не далее 1/2 радиуса от центра, к общей площади окружности.
Площадь кругового сегмента можно найти с помощью формулы:
\[ S = \frac{1}{2} r^2 (\theta - \sin \theta), \]
где \( r \) - радиус окружности, \( \theta \) - центральный угол, соответствующий круговому сегменту.
В данном случае, у нас центральный угол равен \( \theta = 60^\circ \) (поскольку 1/2 радиуса соответствует углу в 60 градусов).
Таким образом, площадь кругового сегмента равна:
\[ S = \frac{1}{2} r^2 (\frac{\pi}{3} - \frac{\sqrt{3}}{2}). \]
Общая площадь окружности равна \( \pi r^2 \).
Теперь можем найти вероятность того, что точка упадет не далее 1/2 радиуса от центра:
\[ P = \frac{S}{\pi r^2} = \frac{\frac{1}{2} r^2 (\frac{\pi}{3} - \frac{\sqrt{3}}{2})}{\pi r^2} = \frac{\frac{\pi}{3} - \frac{\sqrt{3}}{2}}{2\pi} \approx 0.09. \]
Итак, вероятность того, что точка упадет не далее 1/2 радиуса от центра окружности, составляет около 0.09 (или 9%).
Площадь кругового сегмента можно найти с помощью формулы:
\[ S = \frac{1}{2} r^2 (\theta - \sin \theta), \]
где \( r \) - радиус окружности, \( \theta \) - центральный угол, соответствующий круговому сегменту.
В данном случае, у нас центральный угол равен \( \theta = 60^\circ \) (поскольку 1/2 радиуса соответствует углу в 60 градусов).
Таким образом, площадь кругового сегмента равна:
\[ S = \frac{1}{2} r^2 (\frac{\pi}{3} - \frac{\sqrt{3}}{2}). \]
Общая площадь окружности равна \( \pi r^2 \).
Теперь можем найти вероятность того, что точка упадет не далее 1/2 радиуса от центра:
\[ P = \frac{S}{\pi r^2} = \frac{\frac{1}{2} r^2 (\frac{\pi}{3} - \frac{\sqrt{3}}{2})}{\pi r^2} = \frac{\frac{\pi}{3} - \frac{\sqrt{3}}{2}}{2\pi} \approx 0.09. \]
Итак, вероятность того, что точка упадет не далее 1/2 радиуса от центра окружности, составляет около 0.09 (или 9%).
1
·
Хороший ответ
28 сентября 2024 12:12
Остались вопросы?
Еще вопросы по категории Математика
Какие числа следуют за числом 13 в последовательности 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 36?...
Какова стоимость половины килограмма, если один килограмм стоит 10 центов?...
What is the English equivalent of "100000"?...
Вопрос: Если даны 100 мм, то сколько это в сантиметрах?...
Какой объект нужно измерить, если даны числа 1 и 2?...