Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 895 б
- Dwayne_Johnson 865 б
6 октября 2024 10:44
460
В колебательном контуре любительского радиоприемника электроёмкость конденсатора можно изменять в пределах от 0,2 до 8 нФ. Определите разницу между максимальным и минимальным значением индуктивности контура, если рабочий диапазон приёмника - от 150 до 600 МГц.
1
ответ
Для колебательного контура с резонансной частотой \( f_0 \) и индуктивностью \( L \) формула для резонансной частоты выглядит следующим образом:
\[ f_0 = \frac{1}{2\pi\sqrt{LC}} \]
Для данного случая имеем диапазон частот от 150 до 600 МГц, что означает, что резонансная частота контура должна находиться в этом диапазоне. Подставим минимальное и максимальное значение емкости в формулу резонансной частоты и найдем соответствующие минимальное и максимальное значения индуктивности:
1. Для минимального значения емкости \( C_{min} = 0,2 \) нФ:
\[ f_{0_{min}} = \frac{1}{2\pi\sqrt{L_{min} \cdot 0,2 \times 10^{-9}}} \]
\[ L_{min} = \left( \frac{1}{2\pi f_{0_{min}}} \right)^2 \times 0,2 \times 10^{-9} \]
2. Для максимального значения емкости \( C_{max} = 8 \) нФ:
\[ f_{0_{max}} = \frac{1}{2\pi\sqrt{L_{max} \cdot 8 \times 10^{-9}}} \]
\[ L_{max} = \left( \frac{1}{2\pi f_{0_{max}}} \right)^2 \times 8 \times 10^{-9} \]
Теперь найдем разницу между максимальным и минимальным значениями индуктивности:
\[ \Delta L = L_{max} - L_{min} \]
Подставим значения и рассчитаем результат.
\[ f_0 = \frac{1}{2\pi\sqrt{LC}} \]
Для данного случая имеем диапазон частот от 150 до 600 МГц, что означает, что резонансная частота контура должна находиться в этом диапазоне. Подставим минимальное и максимальное значение емкости в формулу резонансной частоты и найдем соответствующие минимальное и максимальное значения индуктивности:
1. Для минимального значения емкости \( C_{min} = 0,2 \) нФ:
\[ f_{0_{min}} = \frac{1}{2\pi\sqrt{L_{min} \cdot 0,2 \times 10^{-9}}} \]
\[ L_{min} = \left( \frac{1}{2\pi f_{0_{min}}} \right)^2 \times 0,2 \times 10^{-9} \]
2. Для максимального значения емкости \( C_{max} = 8 \) нФ:
\[ f_{0_{max}} = \frac{1}{2\pi\sqrt{L_{max} \cdot 8 \times 10^{-9}}} \]
\[ L_{max} = \left( \frac{1}{2\pi f_{0_{max}}} \right)^2 \times 8 \times 10^{-9} \]
Теперь найдем разницу между максимальным и минимальным значениями индуктивности:
\[ \Delta L = L_{max} - L_{min} \]
Подставим значения и рассчитаем результат.
0
·
Хороший ответ
6 октября 2024 10:45
Остались вопросы?
Еще вопросы по категории Физика
Небольшой шарик массой m = 2 кг подвешен на нити. Шарик отвели в сторону так, что нить приняла горизонтальное положение, и отпустили. Определите угол...
Ёмкость плоского воздушного конденсатора С=10 в минус 9 степени Ф, расстояние между пластинами 4 мм, площадь обкладки конденсатора и пластины 150 см в...
Какое давление производит столб ртути высотой 76 см...
Прошу объясните как решать!! По прямолинейной автостраде (рис.) движутся равномерно: автобус — вправо со скоростью 20 м/с, легковой автомобиль — влево...
Помогите пожалуйста ответить на вопросы ( на первый не обязательно)...