Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 865 б
6 октября 2024 10:44
485
В колебательном контуре любительского радиоприемника электроёмкость конденсатора можно изменять в пределах от 0,2 до 8 нФ. Определите разницу между максимальным и минимальным значением индуктивности контура, если рабочий диапазон приёмника - от 150 до 600 МГц.
1
ответ
Для колебательного контура с резонансной частотой \( f_0 \) и индуктивностью \( L \) формула для резонансной частоты выглядит следующим образом:
\[ f_0 = \frac{1}{2\pi\sqrt{LC}} \]
Для данного случая имеем диапазон частот от 150 до 600 МГц, что означает, что резонансная частота контура должна находиться в этом диапазоне. Подставим минимальное и максимальное значение емкости в формулу резонансной частоты и найдем соответствующие минимальное и максимальное значения индуктивности:
1. Для минимального значения емкости \( C_{min} = 0,2 \) нФ:
\[ f_{0_{min}} = \frac{1}{2\pi\sqrt{L_{min} \cdot 0,2 \times 10^{-9}}} \]
\[ L_{min} = \left( \frac{1}{2\pi f_{0_{min}}} \right)^2 \times 0,2 \times 10^{-9} \]
2. Для максимального значения емкости \( C_{max} = 8 \) нФ:
\[ f_{0_{max}} = \frac{1}{2\pi\sqrt{L_{max} \cdot 8 \times 10^{-9}}} \]
\[ L_{max} = \left( \frac{1}{2\pi f_{0_{max}}} \right)^2 \times 8 \times 10^{-9} \]
Теперь найдем разницу между максимальным и минимальным значениями индуктивности:
\[ \Delta L = L_{max} - L_{min} \]
Подставим значения и рассчитаем результат.
\[ f_0 = \frac{1}{2\pi\sqrt{LC}} \]
Для данного случая имеем диапазон частот от 150 до 600 МГц, что означает, что резонансная частота контура должна находиться в этом диапазоне. Подставим минимальное и максимальное значение емкости в формулу резонансной частоты и найдем соответствующие минимальное и максимальное значения индуктивности:
1. Для минимального значения емкости \( C_{min} = 0,2 \) нФ:
\[ f_{0_{min}} = \frac{1}{2\pi\sqrt{L_{min} \cdot 0,2 \times 10^{-9}}} \]
\[ L_{min} = \left( \frac{1}{2\pi f_{0_{min}}} \right)^2 \times 0,2 \times 10^{-9} \]
2. Для максимального значения емкости \( C_{max} = 8 \) нФ:
\[ f_{0_{max}} = \frac{1}{2\pi\sqrt{L_{max} \cdot 8 \times 10^{-9}}} \]
\[ L_{max} = \left( \frac{1}{2\pi f_{0_{max}}} \right)^2 \times 8 \times 10^{-9} \]
Теперь найдем разницу между максимальным и минимальным значениями индуктивности:
\[ \Delta L = L_{max} - L_{min} \]
Подставим значения и рассчитаем результат.
0
·
Хороший ответ
6 октября 2024 10:45
Остались вопросы?
Еще вопросы по категории Физика
Мальчик тянет санки силой 50 Н,направленной под углом 30 к горизонту. При этом сани движутся равномерно и за минуту совершают перемещение в 30 м .Каку...
Удельная теплота плавления свинца 0,25 • 105 Дж/кг. Это значит, что для плавления ... энергии. А) свинца массой 1 кг требуется 0,25 I05 Дж. Б) свинца...
Вырази давление в паскалях 0.06гПа. 0.06гПа = Па...
как найти удельную теплоёмкость ( c ) , если не известно само вещество , но известно: масса ( m ), t1 и t2 , Q . нужна формула ....
Воду массой m_1=40 кг налили в цилиндрический бак диаметром d=0,2 м. После этого в него бросили кусок льда массой m_2=9 кг, к которому примерз камень,...