Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
17 октября 2024 03:57
507
Шар радиуса 25 дм пересечён плоскостью, находящейся на расстоянии 24 дм от центра. Найдите площадь сечения.
1
ответ
Для решения данной задачи нам необходимо найти площадь сечения шара плоскостью.
Площадь сечения шара плоскостью можно найти по формуле:
\[ S = \pi r^2 - \pi d^2 \]
где:
- \( S \) - площадь сечения,
- \( r \) - радиус шара,
- \( d \) - расстояние от центра шара до плоскости.
Подставим известные значения:
\( r = 25 \, \text{дм} \),
\( d = 24 \, \text{дм} \).
\[ S = \pi \cdot 25^2 - \pi \cdot 24^2 \]
\[ S = \pi \cdot 625 - \pi \cdot 576 \]
\[ S = 625\pi - 576\pi \]
\[ S = 49\pi \, \text{дм}^2 \]
Ответ: Площадь сечения шара плоскостью составляет \( 49\pi \, \text{дм}^2 \).
Площадь сечения шара плоскостью можно найти по формуле:
\[ S = \pi r^2 - \pi d^2 \]
где:
- \( S \) - площадь сечения,
- \( r \) - радиус шара,
- \( d \) - расстояние от центра шара до плоскости.
Подставим известные значения:
\( r = 25 \, \text{дм} \),
\( d = 24 \, \text{дм} \).
\[ S = \pi \cdot 25^2 - \pi \cdot 24^2 \]
\[ S = \pi \cdot 625 - \pi \cdot 576 \]
\[ S = 625\pi - 576\pi \]
\[ S = 49\pi \, \text{дм}^2 \]
Ответ: Площадь сечения шара плоскостью составляет \( 49\pi \, \text{дм}^2 \).
0
·
Хороший ответ
17 октября 2024 04:00
Остались вопросы?
Еще вопросы по категории Геометрия
Человек ростом 1,9 м стоит на расстоянии 12 м от столба,на котором висит фонарь на высоте 7,6 м.Найти длину тени человека в метрах...
1. На какой прямой можно взять точки принадлежащие и не принадлежащие ей? 1) на любой 2) на параллельной данной 3) на перпендикулярной данной 2....
Дана наклонная четырехугольная призма, в основании квадрат. Вершина А1 равноудалена от всех вершин нижнего основания, длина высоты призмы ✓2, боковое...
Боковая сторона равнобокой трапеции равна 10 дм. Её диагональ делит среднюю линию трапеции на отрезки 6 дм и 14 дм. Найдите площадь трапеции ...
Докажите что вписанные углы опирающийся на одну и ту же дугу, равны...