Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 865 б
17 октября 2024 03:57
204
Шар радиуса 25 дм пересечён плоскостью, находящейся на расстоянии 24 дм от центра. Найдите площадь сечения.
1
ответ
Для решения данной задачи нам необходимо найти площадь сечения шара плоскостью.
Площадь сечения шара плоскостью можно найти по формуле:
\[ S = \pi r^2 - \pi d^2 \]
где:
- \( S \) - площадь сечения,
- \( r \) - радиус шара,
- \( d \) - расстояние от центра шара до плоскости.
Подставим известные значения:
\( r = 25 \, \text{дм} \),
\( d = 24 \, \text{дм} \).
\[ S = \pi \cdot 25^2 - \pi \cdot 24^2 \]
\[ S = \pi \cdot 625 - \pi \cdot 576 \]
\[ S = 625\pi - 576\pi \]
\[ S = 49\pi \, \text{дм}^2 \]
Ответ: Площадь сечения шара плоскостью составляет \( 49\pi \, \text{дм}^2 \).
Площадь сечения шара плоскостью можно найти по формуле:
\[ S = \pi r^2 - \pi d^2 \]
где:
- \( S \) - площадь сечения,
- \( r \) - радиус шара,
- \( d \) - расстояние от центра шара до плоскости.
Подставим известные значения:
\( r = 25 \, \text{дм} \),
\( d = 24 \, \text{дм} \).
\[ S = \pi \cdot 25^2 - \pi \cdot 24^2 \]
\[ S = \pi \cdot 625 - \pi \cdot 576 \]
\[ S = 625\pi - 576\pi \]
\[ S = 49\pi \, \text{дм}^2 \]
Ответ: Площадь сечения шара плоскостью составляет \( 49\pi \, \text{дм}^2 \).
0
·
Хороший ответ
17 октября 2024 04:00
Остались вопросы?
Еще вопросы по категории Геометрия
В прямоугольном треугольнике ABC угол C равен 90 градусов. Один из катетов на 7 больше второго. Найдите длину меньшего катета если Гипотенуза AB равна...
периметр треугольника равен 48 см а одна из сторон равна 18см. найдите две другие , если их разность равна 4,6 см...
В прямоугольном треугольнике ABC (угол C=90 градусов) AC=5 см, BC=5 корень квадратный из 3-х см. Найдите угол B и гипотенузу AB....
Диаметр шара равен 4m. Черезконец деаметра проведена плоскость под углом 30 градусов к нему. Найдите площадь сечения шара этой плоскастью...
Докажите,что касательная к окружности перпендикулярна к радиусу этой окружности,проведенному в точку касания...