Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
17 октября 2024 03:57
432
Шар радиуса 25 дм пересечён плоскостью, находящейся на расстоянии 24 дм от центра. Найдите площадь сечения.
1
ответ
Для решения данной задачи нам необходимо найти площадь сечения шара плоскостью.
Площадь сечения шара плоскостью можно найти по формуле:
\[ S = \pi r^2 - \pi d^2 \]
где:
- \( S \) - площадь сечения,
- \( r \) - радиус шара,
- \( d \) - расстояние от центра шара до плоскости.
Подставим известные значения:
\( r = 25 \, \text{дм} \),
\( d = 24 \, \text{дм} \).
\[ S = \pi \cdot 25^2 - \pi \cdot 24^2 \]
\[ S = \pi \cdot 625 - \pi \cdot 576 \]
\[ S = 625\pi - 576\pi \]
\[ S = 49\pi \, \text{дм}^2 \]
Ответ: Площадь сечения шара плоскостью составляет \( 49\pi \, \text{дм}^2 \).
Площадь сечения шара плоскостью можно найти по формуле:
\[ S = \pi r^2 - \pi d^2 \]
где:
- \( S \) - площадь сечения,
- \( r \) - радиус шара,
- \( d \) - расстояние от центра шара до плоскости.
Подставим известные значения:
\( r = 25 \, \text{дм} \),
\( d = 24 \, \text{дм} \).
\[ S = \pi \cdot 25^2 - \pi \cdot 24^2 \]
\[ S = \pi \cdot 625 - \pi \cdot 576 \]
\[ S = 625\pi - 576\pi \]
\[ S = 49\pi \, \text{дм}^2 \]
Ответ: Площадь сечения шара плоскостью составляет \( 49\pi \, \text{дм}^2 \).
0
·
Хороший ответ
17 октября 2024 04:00
Остались вопросы?
Еще вопросы по категории Геометрия
В прямоугольной трапеции ABCD (угол D=90 градусов) острый угол равен 30 градусов. Найдите угол AQN, образованный биссектрисами AM и CN углом А и С. Оч...
Какие прямые называются скрещивающимися?...
1 . Боковое ребро прямой призмы равно 10 см , а ее объем - 200 см3 . Основание призмы - равнобокая трапеция с основаниями 2 и 8 см . Найдите полную по...
Даны координаты вершин четырехугольника ABCD: A(-6;1), B(0;5), C(6;-4),D(0,-8). Докажите, что это прямоугольник и найдите координаты точки пересечения...
Дано: АВ=ВС, угол В=80 градусов Найти: углы треугольника АВС....