Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 865 б
25 октября 2024 08:42
203
- диагональ прямоугольника ABCD пересекается в точке О, LABO = 37°. Найдите угол AOD.
1
ответ
Для решения этой задачи нам нужно использовать свойства параллельных прямых и треугольников.
Учитывая, что угол ABO равен 37° (так как LABO = 37°), и что прямые AB и CD параллельны (поскольку это диагонали прямоугольника), мы можем заметить, что угол ABO равен углу CDO. Таким образом, угол CDO также равен 37°.
Теперь рассмотрим треугольник ADO. Мы знаем, что сумма углов треугольника равна 180°. Учитывая, что угол ADO равен 90° (так как это прямой угол в прямоугольнике), и углы AOD и CDO равны 37°, мы можем найти угол AOD.
Угол AOD = 180° - угол ADO - угол CDO
Угол AOD = 180° - 90° - 37° - 37°
Угол AOD = 180° - 164°
Угол AOD = 16°
Таким образом, угол AOD равен 16°.
Учитывая, что угол ABO равен 37° (так как LABO = 37°), и что прямые AB и CD параллельны (поскольку это диагонали прямоугольника), мы можем заметить, что угол ABO равен углу CDO. Таким образом, угол CDO также равен 37°.
Теперь рассмотрим треугольник ADO. Мы знаем, что сумма углов треугольника равна 180°. Учитывая, что угол ADO равен 90° (так как это прямой угол в прямоугольнике), и углы AOD и CDO равны 37°, мы можем найти угол AOD.
Угол AOD = 180° - угол ADO - угол CDO
Угол AOD = 180° - 90° - 37° - 37°
Угол AOD = 180° - 164°
Угол AOD = 16°
Таким образом, угол AOD равен 16°.
0
·
Хороший ответ
25 октября 2024 08:45
Остались вопросы?
Еще вопросы по категории Геометрия
ребро куба ABCDA1B1C1D1 равно a точка P- середина ребра D1C1. Найдите расстояние до плоскости BPD от точек: а) A1, ) A, и) C1 задача должна быть реше...
Здравствуйте, не могли бы объяснить, как найти периметр многоугольника, если известна площадь и радиус вписанной окружности? просто по действиям, что...
На плоскости проведены три луча ОА,ОВ,ОС.Чему может равняться угол АОС,если:а)<АОВ=70градусов,<ВОС=50градусов,<АОВ=102 градуса,,ВОС=84 градус...
Найдите cos a, если sin a = 3/5...
Хорды MN и PK пересекаются в точке E так, что ME=12 см, NE=3 см, PE=KE. Найдите PK....