Лучшие помощники
- Megamozg 2205 б
- Matalya1 1800 б
- DevAdmin 1720 б
- arkasha_bortnikov 900 б
- Dwayne_Johnson 870 б
4 ноября 2024 18:44
301
ABCDA1B1C1D1 - прямоугольный параллелепипед, причем ВС = 3а, CD = а, СС1 - 6а. Найдите тангенс угла между плоскостями ВС1D и АВС.
1
ответ
Для начала, обозначим длины сторон прямоугольного параллелепипеда следующим образом:
AB = a, BC = b, CD = c
Из условия задачи имеем:
BC = 3a, CD = a, CC1 = 6a
Теперь найдем длины сторон параллелограмма ABCD:
AC = √(AB^2 + BC^2) = √(a^2 + (3a)^2) = √(a^2 + 9a^2) = √10a^2 = a√10
BD = √(BC^2 + CD^2) = √((3a)^2 + a^2) = √(9a^2 + a^2) = √10a^2 = a√10
Теперь найдем тангенс угла между плоскостями ВС1D и АВС. Угол между плоскостями равен углу между их нормалями.
Вектор нормали к плоскости ВС1D: n1 = (0, 1, -1), так как С1С параллелен оси OY и направлен в сторону уменьшения координаты OY, а ВС1 направлен в сторону уменьшения координаты OZ.
Вектор нормали к плоскости АВС: n2 = (1, 1, 3), так как AB и BC направлены вдоль осей OX и OY, а плоскость АВС перпендикулярна этим векторам.
Теперь найдем скалярное произведение векторов n1 и n2:
n1 * n2 = 0*1 + 1*1 + (-1)*3 = 0 + 1 - 3 = -2
Тангенс угла между плоскостями ВС1D и АВС равен модулю скалярного произведения нормалей, деленному на произведение модулей нормалей:
tg(α) = |n1 * n2| / (|n1| * |n2|) = |-2| / (√2 * √11) = 2 / √22
Ответ: tg(α) = 2 / √22.
AB = a, BC = b, CD = c
Из условия задачи имеем:
BC = 3a, CD = a, CC1 = 6a
Теперь найдем длины сторон параллелограмма ABCD:
AC = √(AB^2 + BC^2) = √(a^2 + (3a)^2) = √(a^2 + 9a^2) = √10a^2 = a√10
BD = √(BC^2 + CD^2) = √((3a)^2 + a^2) = √(9a^2 + a^2) = √10a^2 = a√10
Теперь найдем тангенс угла между плоскостями ВС1D и АВС. Угол между плоскостями равен углу между их нормалями.
Вектор нормали к плоскости ВС1D: n1 = (0, 1, -1), так как С1С параллелен оси OY и направлен в сторону уменьшения координаты OY, а ВС1 направлен в сторону уменьшения координаты OZ.
Вектор нормали к плоскости АВС: n2 = (1, 1, 3), так как AB и BC направлены вдоль осей OX и OY, а плоскость АВС перпендикулярна этим векторам.
Теперь найдем скалярное произведение векторов n1 и n2:
n1 * n2 = 0*1 + 1*1 + (-1)*3 = 0 + 1 - 3 = -2
Тангенс угла между плоскостями ВС1D и АВС равен модулю скалярного произведения нормалей, деленному на произведение модулей нормалей:
tg(α) = |n1 * n2| / (|n1| * |n2|) = |-2| / (√2 * √11) = 2 / √22
Ответ: tg(α) = 2 / √22.
0
·
Хороший ответ
4 ноября 2024 18:45
Остались вопросы?
Еще вопросы по категории Геометрия
Через вершину А ромба АВСD проведена прямая АМ не лежащая в плоскости ромба. Доказать, что прямая ВС параллельна (МАD). Напишите подробное решение и р...
на каком расстоянии в метрах от фонаря расположенного на высоте 5,4 метра стоит человек ростом 1,8 метров если его длина тени равна 7 метров...
Основания AD трапеции ABCD лежит в плоскости альфа, Через точки B и C проведены паралельные прямые, пересекающие плоскость альфа в точках Е и F соотве...
Найдите отношение площадей треугольников ABC и KMN, если ab=8 см, bc= 12 см, ac=16 см, km=10 см,mn= 15 см, nk=20 см?...
Боковая сторона равнобокой трапеции равна 103 см, а острый yrox - 30 deg Найдите площадь этой трапеции, если известно, что в неё...